{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

311_Session13_Simulation_Chen

311_Session13_Simulation_Chen - Session13:Simulation...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Operations Management Session 13:  Simulation 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Session 14 2 Class Objectives Presenting a new type of a problem Generate random numbers. Simple Examples Portfolio Optimization New Product Development
Background image of page 2
Session 14 3 Why simulation? Methods to deal with randomness Build up models to have analytical solution Mimic the randomness, observe and analyze the  outcome Simulation
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Session 14 4 Portfolio Example What is the expected value, standard deviation and  coefficient of variation of the portfolio? Budget: $1000 Stock t A B Current stock price 100 50 Portfolio composition 90% 10% # of share 9 2 Estimate a month later Distribution ~U[50,150] ~N(45, 3) Simulate the stock price a month later to observe the portfolio value. next
Background image of page 4
Session 14 5 Random Number Generator = RAND() generates a random variables between 0 and 1 ~  Uniform Distribution between [0,1] = 2*RAND() generates a random variable between 0 and 2 = 3 + RAND() generates a random variable between 3 an 4 = a + (b-a)*RAND() generates a random variable between a  and b ~ Uniform Distribution between [a, b]
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Session 14 6 Generating Normal Distribution = NORMINV(probability, mean, standard deviation) If we assign probability = RAND() then  NORMINV function generates a random variable that follows a  normal distribution with specified mean and standard deviation   =NORMINV(RAND(), mean, standard deviation)
Background image of page 6
Session 14 7 Portfolio Example What is the expected value, standard deviation and  coefficient of variation of the portfolio? Budget: $1000 Stock t A B Current stock price 100 50 Portfolio composition 90% 10% # of share 9 2 Estimate a month later Distribution ~U[50,150] ~N(45, 3) Simulate the stock price a month later to observe the portfolio value. next
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Session 14 8 Portfolio Example Standard deviation of portfolio is less than  standard deviation of Stock A plus Stock B Why? Risk pooling Try portfolios: 30% Stock A + 70% Stock B 50% Stock A + 50% Stock B 70% Stock A + 30% Stock B Which one has a lower coefficient of variation.
Background image of page 8
Session 14 9 Product Development Example
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}