QMB09sol_2 - Physics 139B Solutions to Homework Set 2 Fall...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Physics 139B Solutions to Homework Set 2 Fall 2009 1. Liboff, problem 9.32 on page 395. (a) The key equation is given in Table 9.4 on p. 379 of Liboff: L | , m ) = planckover2pi1 [( m )( m + 1)] 1 / 2 | , m 1 ) . (1) We will also need to use: vector L 2 | , m ) = planckover2pi1 2 ( + 1) | , m ) . (2) When coupling two p states, there are nine possible states in the product basis: | 1 , m 1 ) 1 | 1 , m 2 ) 2 , where m 1 , m 2 = +1 , , 1. Using vector L 2 = vector L 2 1 + vector L 2 2 + 2 L 1 z L 2 z + L 1+ L 2 + L 1 L 2+ , we can operate with vector L 2 on the nine states of the product basis: vector L 2 | 1 , 1 ) 1 | 1 , 1 ) 2 = 6 planckover2pi1 2 | 1 , 1 ) 1 | 1 , 1 ) 2 , vector L 2 | 1 , 1 ) 1 | 1 , ) 2 = 4 planckover2pi1 2 | 1 , 1 ) 1 | 1 , ) 2 + 2 planckover2pi1 2 | 1 , ) 1 | 1 , 1 ) 2 , vector L 2 | 1 , 1 ) 1 | 1 , 1 ) 2 = 2 planckover2pi1 2 | 1 , 1 ) 1 | 1 , 1 ) 2 + 2 planckover2pi1 2 | 1 , ) 1 | 1 , ) 2 , vector L 2 | 1 , ) 1 | 1 , 1 ) 2 = 4 planckover2pi1 2 | 1 , ) 1 | 1 , 1 ) 2 + 2 planckover2pi1 2 | 1 , 1 ) 1 | 1 , ) 2 , vector L 2 | 1 , ) 1 | 1 , ) 2 = 4 planckover2pi1 2 | 1 , ) 1 | 1 , ) 2 + 2 planckover2pi1 2 | 1 , 1 ) 1 | 1 , 1 ) 2 + 2 planckover2pi1 2 | 1 , 1 ) 1 | 1 , 1 ) 2 , vector L 2 | 1 , ) 1 | 1 , 1 ) 2 = 4 planckover2pi1 2 | 1 , ) 1 | 1 , 1 ) 2 + 2 planckover2pi1 2 | 1 , 1 ) 1 | 1 , ) 2 , vector L 2 | 1 , 1 ) 1 | 1 , 1 ) 2 = 2 planckover2pi1 2 | 1 , 1 ) 1 | 1 , 1 ) 2 + 2 planckover2pi1 2 | 1 , ) 1 | 1 , ) 2 , vector L 2 | 1 , 1 ) 1 | 1 , ) 2 = 4 planckover2pi1 2 | 1 , 1 ) 1 | 1 , ) 2 + 2 planckover2pi1 2 | 1 , ) 1 | 1 , 1 ) 2 , vector L 2 | 1 , 1 ) 1 | 1 , 1 ) 2 = 6 planckover2pi1 2 | 1 , 1 ) 1 | 1 , 1 ) 2 . In evaluating the above, I replaced vector L 2 with vector L 2 1 + vector L 2 2 +2 L 1 z L 2 z + L 1+ L 2 + L 1 L 2+ , and then used eqs. (1) and (2) repeatedly. Likewise, we can operate with vector L 2 on the nine states of the total angular mo- mentum bases, | , m ; 1 1 ) , vector L 2 | 2 , m ; 1 1 ) = 6 planckover2pi1 2 | 2 , m ; 1 1 ) , m = 2 , 1 , , 1 , 2 , vector L 2 | 1 , m ; 1 1 ) = 2 planckover2pi1 2 | 2 , m ; 1 1 ) , m = 1 , , 1 , vector L 2 | , 0 ; 1 1 ) = 0 , It is now straightforward to verify Table 9.5 on p. 394 of Liboff. First, by operating with L z = L z 1 + L z 2 , it follows that in the expansion | m ; 1 2 ) = summationdisplay m 1 ,m 2 C m 1 m 2 | 1 m 1 ) 1 | 2 m 2 ) 2 , only terms with m = m 1 + m 2 appear on the right hand side above. Second, by operating with vector L 2 and using the results above, we can verify the entries of Table 9.5. We give two examples. To check that | 2 , 1 ; 1 , 1 ) = radicalBig 1 2 bracketleftbigg | 1 , 1 ) 1 | 1 , ) 2 + | 1 , ) 1 | 1 , 1 ) 2 bracketrightbigg , we note that vector...
View Full Document

Page1 / 9

QMB09sol_2 - Physics 139B Solutions to Homework Set 2 Fall...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online