2.2 - Dr. Doom Lin Alg MATH1850/2050 Section 2.2 Page 1 of...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Dr. Doom Lin Alg MATH1850/2050 Section 2.2 Page 1 of 5 Chapter 2 - Determinants Section 2.2 - Determinants by Row Reduction In this section we are trying to come up with a more efficient method for calculating deter— minants. Theorem 2.2.1. Let A be a square matrix. lf A has a row (or column) consisting entirely of zeros, then det(A) = 0. Proof: ‘80“ Common. emu» Hume we am) (comm) op ms 0%.} A: 0+0*...+O=o. Theorem 2.2.2. Let A be a square matrix. Then det(AT) = det(A). Proof: ‘U‘A " clinch ’f Que—61. * - -- +Q—c“c.‘m Mao; we Lli Raul r' f F ~ . M AT= 0g Zn-i-Qiaa’fi 'l‘ _ _ Quack" Acme Tue Lfl‘ moms. Dr. Doom Lin Alg MATHl850/2050 Section 2.2 Page 2 of 5 Elementary Row Operations Theorem 2.2.3. Let A be an n X 71 matrix. (a) lf B is the matrix resulting when a single row (or single column) of A is multiplied by a scalar k}, then det(B) = k; - det(A). (b) lf B is the matrix that results when two rows (or two columns) of A are interchanged, then det(B) = —det(A). (c) If B is the matrix that results when a multiple of one row (or one column) is added to another row (column, respectively) of A, then det(B) = det(A). 2 —1 __3n 7. —) _ Examples: WithA= 0 3 ,and MA:— 1 (I) o 3 "1/~ —1 —1 2 —1 0 (i) A—eBF 0 3 0 so M%=-3-J&A=—3-\1=—3c. 2903) 3 3 —6 2 —1 0 % MA \ (ii) _’-> B: —i —i 2 o m =— =-1. 91939-3 2 0 3 0 s 0 —3 4 (iii)A———>B3= 0 3 0 ScabieacélafiA’Q. Dr. Doom Lin Alg MATH1850/2050 Section 2.2 Page 3 of 5 Elementary Matrices The following is just Thm. 2.2.3 specialized to the case when/{is an elementary matrix. X. A =1}. 5 MIW=L Theorem 2.2.4. Let E be an n X n elementary matrix. (a) lf E results from multiplying a row of In by a scalar k}, then det(E) = k}. (b) If E results from interchanging two rows of I”, then det(E) = —1. (c) lf E results from adding a multiple of one row of In to another, then det(E) = 1. Examples: WithE1=[1 0], E2=[ 0 1],E3= Met-7‘1 Met:-L Theorem 2.2.5. If A is a square matrix with two proportional rows or two proportional columns, then det(A) = 0. Proof: SAVAHAS z. Vmohzrdwm. laws, 5,5 5», Qi=k25 mtg hem A —-—> [5 w omno (Wm) is Awe: 7.629s) 261.7%: 3 g Mum-A (mm. «mm Se. 43:560. Example: Introducing Zero Rows[Columns] 1—125 A- 3 0 1 —3 mg (13:1[1‘50 flit/AWO- ' 2 —2 4 10 0 5 1 —1 \ -\ 7. s , 3 ° ‘0‘: =3 Msao (21-13—22. 2 g L _‘ X “hang go Dr. Doom Lin Alg MATH1850/2050 Section 2.2 Page 4 of 5 Theorem 2.1.3. If A is an n X n triangular matrix (upper, lower, or diagonal) then det(A) is the product of the entries on the diagonal. That is = allagg . . . am. Proof: The proof suggested by the textbook uses cofactor expansion to calculate the deter— minant. ' 4»; ---Qu A. 2:21:32: MA= a“a... aw o 0...Qm o "QM = ennui-‘3‘“ :12 11:21: a . .Qnu 2 Qu-Qu' --- Ian As an alternative, we can use the definition of determinants from Section 2.4. (determinant as the sum of signed elementary products) yd stanza ecu-‘7 we.me w Vt! -\ 0? “men me 25m- aLkA‘ "' Q\\qn"'am~ . _ _ . . n K’ Aisocwte» 96¢.HDTRTIOO (‘22)33-"2‘A'3 “’4‘” l‘ We” (MS 0 ngwo Q D1“. Doom Lin Alg MATH1850/2050 Section 2.2 Page 5 of 5 Example: Using Row Reduction to Evaluate Determinants 1—1 2—1 _ 2—21—3 A“ —1 1 4 6 on. use \A\ 0 1 2 —1 o 34" lute-«1'15. 3 Example: Row Operations and Cofactor Expansion 1—1 2—1 2—2 1—3 A: —1 1 4 6 0 1 2—1 _ 'L 0 \—3 «+2. MA " 5‘ o “L = 4 ('4) '2, \ —3 cl 1-\ —\ q 4 _ c. s Relates _ 6‘ a Q1'Q1fi223 “k L If I J ’7‘ V“. I ——/ (u h «[3 _/ H l _D § ...
View Full Document

This note was uploaded on 11/10/2009 for the course MATH 1850 taught by Professor Mihaibeligan during the Spring '09 term at UOIT.

Page1 / 5

2.2 - Dr. Doom Lin Alg MATH1850/2050 Section 2.2 Page 1 of...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online