# 4.1 - Dr Doom Lin Alg MATH1850/2050 Section 4.1 Page 1 of 8...

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Dr. Doom Lin Alg MATH1850/2050 Section 4.1 Page 1 of 8 Chapter 4 - Euclidean Vector Spaces Section 4.1 - Euclidean n-Space Deﬁnition If n is a positive integer, then an ordered n-tuple is a se- quence of n real numbers (a1, a2, . . . ,an). The set of all ordered n-tuples is called n-space and is denoted by R". Examples: 1- so,“ , \Q:L Au ouﬁuan PAD. is (—59.) cm Tuiuv. 0(— (431.) A5 A Pain“: um“ x—coq‘p -I\) Teen”: 1: on, As A occur. 1\-\&1’ Couums we: 0mm (0,9) To THE «im- #9 amass 3—1091}: (“4,79 Dr. Doom Lin Alg MATHl850/2050 Section 4.1 Page 2 of 8 Deﬁnitions Two vectors u = (U1,U2,...,Un) and V = (v1,v2,...,vn) in R" are called equal if U1=U1, UQZUQ, ..., unzvn. The sum u+V is deﬁned by u+v= (u1+v1,uQ+v2,...,un—i—vn), and if k is any scalar, the scalar multiple ku is deﬁned by [€11 2 (km, ICUQ, . . . , The operations above are called the standard operations on R". The negative of u, denoted by —u is the vector —11 = (—U1,—U2,. . . , —Un) and the difference of vectors is deﬁned by V—uzv+(—u) Examples: 1. if(a,3,b,0)=(1,3,a,0) then Q=4 , Lam—.4 2. (2,1,—1,3,5)+(6,1,1,0,—3) = (9.,1,o,3,z) 3. 4(1,7r,2,0) = (HAMLO) Dr. Doom Lin Alg MATH1850/2050 Section 4.1 Page 3 of 8 Theorem 4.1.1 Properties of Vectors in R”. If u =(u1,u2,...,un),v = (v1,v2,...,vn) and W = (w1,w2,...,wn) are vec- tors in R" and k and m are scalars, then: (a) u __ V = V + u COMMUTNYRhTV b) u —— (V + w) = (u + v) + w Maw/xiiqu orucm {a 10;“ is (o,e,_,,,o) LBS = \L Chg = ¥(u‘wuu1+v1 ’ . . _, Low“) = (kLuwu‘), \L (Mm ,waM) = (item—kw , \cuu huh-.. , hum-kw) = (Mu, ’ kq.“ ...)kuq+(kv.,kvh...,kuh) = ‘4 g -\ k! = REES Deﬁnition If u = (ul,u2, . . . ,un) and V = (111,112, . . . ,vn) are any vectors in R", then the Euclidean inner product 11 ~ V is deﬁned by u~v=u1v1+uQv2+...—i—unvn Example: (2, —1,0,5) ~ (1,3,5, —2) = 1-H L—n-H o-S +SGI)= -u,. Dr. Doom Lin Alg NIATHléﬁoU/QUSU Section 4.1 Page 4 of 8 Theorem 4.1.2 Properties of Euclidean Inner Product If u,v and W are vectors in R” and k is any scalar, then: u - v = v - u coMMUTATEUi’VY (b) (u+v) -w=u-w+v-w (c) (ku) - v = Mu - v) (d) v - v 2 0. Moreover, v - v = 0 if and only if v = 0. 1 _ . Proof: (51.). V41 —. vf+vl+ ...+ U“ >/O since we"! mom mvucemwc W5. 1. . 1. 1. g 7- mLeoum vf+~f1}*-—-Nh ‘0 ‘« UL=V1.‘-~‘IM=O. \J‘:\I,L=“_:\lh=0 Example: With u = (3,—2,1,2),v = (2,0? —1} —1),w =(1,1,—1,1) LEE: (US-Ely t (I; lhz’o’llaojll-‘W? LH\$=£H\$ ‘h—lis is Acrr AWOOC. Lake-v3 +1.51 =1+l= Li Deﬁnition we deﬁne the Euclidean norm (or Euclidean length) of a vector u 2 (U1, U2, . . . ,un) in R" by: ||u|| = (11‘ 1101/2 = lu}«u¢1’v.-.+ul' and we deﬁne the Euclidean distance between points u 2 (U1, U2, . . . ,un) and V = (111,112, . . . ,vn) in R" by d(u, v) = ||ul — VI I-= tecvo‘arcuz-vm “scan-um Examples: 1. ifu= (2,3,—1,1) then = Lu‘ﬂH-H =55 2. with u as above and V = (1, —2,3,2), d(u,v) = ||u — V|| =\l( l JSF‘D'D“ =m’ =§L€5l Dr. Doom Lin Alg MATH1850/2050 Section 4.1 Page 5 of 8 Theorem 4.1.3 Cauchy-Schwarz Inequality in R”. If u = (U1,U2, . . . ,un) and V = (111,112, . . . ,vn) are vectors in R", then / DES-M16 WT? \MLU“ lu'V\ SHUIIIIVII Example: With 11 = (2, —1,2),V = (—1,3,0) 1w: -9 , \2‘2\=6 \lgl\= ‘Sqmu =3 , “gr—Sew ’ @ \guxﬂ-«S 4 “T = “\MW“ Theorem 4.1.4 Properties of Length in R”. If u = (U1,U2, . . . ,un) and V = (111,112, . . . ,vn) are vectors in R", then: (a) ||uH 2 0 “truce-MM» (b) :0 iffuz 0 EC) ||k11||= lkl ||11|| d) I|u+ VH g + (Triangle Inequality) Pmoﬁa.) \\u\\=0 1% who «1 typo neg wQ Cam m) (A) llgwui: (Jun-(WNW kyle-wry =t\-\l +1wg+tyn W Qm‘f—Scumz Dewy aka-gxezuguugt m M1 .m}: :—————‘ ) w" 3 < ugu‘muguugutgu“ =(\u,u\+\\x_n\)z a So have (llgHuyuSL , Sp llujgté ugu+\\\_2_\\ Dr. Doom Lin Alg MATH1850/2050 Section 4.1 Page 6 of 8 Theorem 4.1.5 Properties of Distance in R”. If u = (“171% - - - vun)aV = (7117712, - - - 77177,) and W = (101,102, . . . ,wn) are vec- tors in R", then: (a) d(u,v) 2 0 W“. swank {\g—guv/o (b) d(u,v) : 0 iff u = V (c) d(u, V) = d(v, u) (d) d(u,v) g d(u, W) + d(w,v) (Triangle Inequality) Proof: i\u_—!“=OL=> =0 4*) U.=\.I, —— .— (ol) out”): \\\L~‘yk\= Massey-M é [\kyQun-gu = ngMHMwM Theorem 4.1.61fu 2 (U1, ug, . . . ,un) and V = (111,112, . . . ,vn) are vectors in R" with the Euclidean inner product, then 1 1 M = leu+vll2 — EMU—VH2 Proof: 1 2' ﬂy!“ = GAMES-Lqu lglC‘Jclg-y + Ml “\A’Qli" = (erg-(£51) = mu; 9,! + m1 svw'“ \\ WW“ My!“ = Li we (£3 = {—uyguk—‘q [UL—VJ". Dr. Doom Lin Alg MATH1850/2050 Section 4.1 Page 7 of 8 Deﬁnition Two vectors u and V in R” are called orthogonal if 11 ~ V = 0. mix: 9&1 g . Examples: With 11 = (2, —1,2,1),V = (1,1,—1,1),w = (1,1,3,1) E R4 \_l~_-'\J='L-\-L-\-\=O so 5.1.;1 'gel-HLi—b‘bfo so gin.) IF V.\y=\-\\*7r\’1=0 5° glw Theorem 3.3.3 If u and a are vectors in R2 or R3 and if a 55 0, then A ‘ a W“ 3 gm: projau 2 H111" a is the vector component of 11 along a _\ u—projau is the vector component of u orthogonal to a pﬁai‘. Q Example: With 11 = (2, —1,3),a = (1,0,2) 11-3.: 94-9-9. , [14!]; {S— N A 4'3 I Mil. —.-. = .3—C\’O,1):(%,QHL§6.) All" S WM?“(1"‘233’(%»0a%)=(~v Theorem 4.1.7 Pythagorean Theorem in R” If u and V are orthogonal vectors in R" with the Euclidean inner product, then ||Ul+V||2 = ||u||2+ ||V||2 Proof: llu+\_/\\1'= Lauri-(«tu \lwi‘Jrzkr-gwwiga inﬁrm" _ W =0 (55-! A v Dr. Doom Lin Alg MATH1850/2050 Section 4.1 Page 8 of 8 A Matrix Formula for the Dot Product If we use column notation for vectors U1 711 U2 U2 11 = ' ,V 2 um 7177 and we omit the brackets on 1 X 1 matrices, then MAsz Mecca LL: yTB 7 [VI V1. —-- V'A] (f1 °(_\I\u|+ V‘Lu1*"-+Vv\u“’\=Ly.gi-S= %-\l = t Um [5m 1% Mars. IfAis annxnmatrix, then we get lAu~V=u~ATV u~AV=ATu~V A‘é‘! = \JT([email protected])% = (MW; = 8%?! Example: Verifying thatIAu ~ V = 11 ~ ATV j 1 2 3 2 1 A: —131,u= 0 ,V= 2 0 0 5 6 1' LHS Aqv- 1° ‘I T L " — ___- q.z=5gy QHS=Q~‘.A\l-'o g=S%/. 3O ‘ C (o ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 8

4.1 - Dr Doom Lin Alg MATH1850/2050 Section 4.1 Page 1 of 8...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online