153_Homework_No._3_Solutions_2005

# 153_Homework_No._3_Solutions_2005 - ECE '53 Harmonia!“...

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE '53 Harmonia!“ 6.6 g(t) . 9(t—T) o 1‘ ' o T 1 T+1_’t a) P[Y(t)=1]=PLq(t—T)=1]V ForQ<t<1 P[Y(t)=0]=P[t<T]=1—t=1—P[Y(t)=1] For1<t<2 P[Y(t)=1] = P[t<T+1]=P[T>t-1]=1—(t—1) = 2—t ~ 'P[Y(t)=0] = 1—P[Y(t)=1]=t—1 'P[X(t)r= 0] P[X(t) = 1] __J:>yC:L_+t ___zé:::L_* o 1 2 o 1 2 Mﬂﬂm=bPWM=H=HH0=H E[Y(t1)Y(t2)] = ~ [01 E[_q(t1 — T)g(t2 — T)|T = Mfg-(AMA ' = [01 g(t1 — A)g(t2 — A)dA 9(t1 — 1‘) 9(t2 — I“) A t1 — 1 t1 t2 — 1 t2 g(t1 — A)g(t2 — A) = 0 for t1 <'t2 — 1 => RY(t1,t2) = 0 for ‘tg - t1 >1 Ift2—1<t,then ' ' 1 t —1 < X<t 9(11 —‘ A)g(t2 " A) = { 0 eisewhere . 1 Case 1 1 LA 0b;1 t1 1 Ry(t1,t2)=t1—(t2—1)=1—(t2—t1) t1<1, 0(t2—1, tg—t1<1 Case 2 / tg-l 0 t1 1 _ RY(t1,t2) = t1 t1 < 1, t2 < 1, t2 —t1 <1 Case 3 ______[:LA 0 Q—ll n Ry(t1,t2) = 2 —t2 t1 > 1, t2 < 2 6.7 a) We will use conditional probability: P[X(t) S :6] = PlgU-T) S :6] = -/01P[g(t- T) s zIT = «\1fT(»\)d»\ [01.19% — A) 5 mm ‘ since mi) =1 t = / P[g(u) S 1:]du after letting u = t — A t—1 g(u) (and hence P[g(u) S 3]) is a periodic function of u with period, so we can change the limits of the above integral to any full period. Thus ’ P[X(tl) g 1:] = [01 P[g(u) s z]du Note that g(u) is deterministic, so 1u:g(u)\$z 0 u:g(u)>z Pmu) s z] ={ So ﬁnally 1 P[X(t) _<_:c] = Amwa du=_/;_X1 du=z . 1 b) mx(t) = E[X(t)] = /o :1: d3 = The correlation is again found using conditioning on T: 1 . E[X(.t)X(t + Tn = /0 Ema — T)y(t + r — T)IT. = A]fr(A)dr\ 1 = /0 g(t — A)g(t + 'r — A)dA t . = /t _1 g(u)g(u + r)du~ g(u)g(u + 7') is a. periodic function in u so we can change the limits to (0,1): E[X(t)X(t + 7)] = fol g(u)g(u + mu (u)=(1—u) i(u+*r)=2-—(u+‘r) 1— n+7) 0 1—7' 1 ~ here we assume 0 < 7' < 1 since E[X (t)X (t + 7)] is periodic in 7'. E[X(t)X(t + 7)] = [1H0 — u)(1— u — 'r)du + [1:0 — u)(2 — u — mu 17737-273 3 2+6+2 6 _ 1.1+: ‘ 3 2 2 Thus 1 T T2 1 01‘0"“) — 5747"; __ 1 7+72-. ‘ 12 2 2 6.15 £[Z(t)] = spa + Y] = £[X]t + £[Y] = tmx + my 2 ma) 51(th + Y)(Xt2 + Y)] -- mz(t1)mz(t;) tlt;£[Xz] + (tl + t;)£[XY] + 8Y2 — t1t2m§ —(t1 + t2)mxmy - mix = tltzaﬁg + (t1 + t2)0x0YPXY + 0}” 02(t13 t2) b) From Example 4.32, Z (t) is a. Gaussian random process. az—tmx-mxlz v exp {— 2(t ax+2wxdypr+Vy)} 0.0 = ——_——-——-—_——-_—— 27r(tza§{ + 2t0'X0’YPXY + 012’) 6.18 Z(t) = X(t) cos wt + Y(t)sin Qt V a) £[Z(t)] = mx(t) coswt + my(t) sinwt = 0 Cz(t1,t;) £[(X(t1) cos wtl + Y(t1) sin wtl) (X (t;) cos wt; + Y(t;) sin wt;)] 8 [X (t1)X (t;)] cos wtl cos wt; + £[X(t1-)Y(t;)] costh sin wt; \—__‘,-—_.1 o + £[Y(t1)X(t;)] sin wtl cos wt; + €[Y(t1)Y(t;)] sin wtl sin wt; 0 . C(t1,t;) cos wtl cos wt; + C(tl, t;) sin wt] sin wt; C(tl, t;) cos w(t1 — t;) ‘ ‘ 1 t b) fz(t)(z) = m e—z‘ /20(t,t) 6.27 a) 4’5” (w) = Qx(w)" = (e—QIWI)" = e—MIWI na/1r => fs..(~'€) = m b) Since 5,, has independent and stat. increments fSn,Sn+h(yia 3/2) = f5» (y1)fsn+h—n (3/2 " yl) ‘ na/7r ' ’ lea/1r (1112 + "202) ((112 - 111,)2 + kzaz) 6.33 a) P[N(t) = 0] = e-M b) PlN (t) s 1] = e-’“ + Ate-M 6.40 Y(t) is a random telegraph process with transition rate pa, since if T = time till next transition, then T = 1'1 + + TN where N is geometric RV Ic=1 up 1" up = . ~——-—= . =>T . atea 0—]‘01—229551 01,—”) eXP r P P[Y(t) = +1] = g = P[Y(t) = —1] if P[Y(0)] = a. and CY (t1, t2) = e‘zatlt"‘1l 6.41 Let X (t) be the random telegraph process, then. P[Y(t) = 1] = P[X(t) = 1] =§ P[Y(t) = 0] = P[X(t) = —1]= % mm = ewes Cy(t1,t2) = £[Y(t1)Y(t2)] _ = P[Y(t1 = 1,Y(t2) = 11—; = P[Y(t1) = 1]P[even # transitions in t2 — t1] — i = \$0 + Waltz-‘1'); -21. 1 -2alt2-f1| H m 6.49 As in the previous problem, we need only ﬁnd the mean and variance of Z (t) = X (t) + X (t ,— s) ’ 8mm = 8[X(t)]+8[X(t—s)]=0 VAR[z(t)1 = amt) + m 4 W] = £[X’(t)] + 2£[X(t)X (t — 3)] + £[X2(t —- 3)] = at+2a(t—s)+a(t—s) ' = 4at — 3as e .___z’___ fz(:)(z) = -——-—-—xp{ “(m-3°” } 21r(4at - 3as) b) Set a = —1 in Problem 6.48. = €COS27rt mx(t) = 8M] cos 21rt = 0 Cx(t1, t2) = VARM] cos 2th cos 21rt2 from Example 6.6 ‘ = % cos 21rt1 cos 21rt2 Autocovariance does not depend only on t1 — t2 => X (t,§ ) not stationary, not Wide sense stationary 6.58 a) From Problem 6.18: £[Z(t)] o 02(t1, t2) = CX(t2 — t1.) COS w(t2 —- t1) => Z(t) is wss b) Z (t) is a. Gaussian RV with mean zero and variance Cx(0). 6.63 a) E[X(t)] E[As(t)] = E[A]s(t) RX(t1,t2) ; = E[A2]3(t1)3(t2) CX(t1,t2) = RX(t1‘, t2) — = b) ' X,(t) = X(t + o) I T E[X,(t)] = % f0 mx(t)dt % ATM/1140.122: E[A]§1,— /0T.9(t)dt l T . 121w) T/o Rx(t+7,t)dt % f: E[A2]s(t + T)3(t)3t ll E[A2]% /0Ts(t + T)3(t)dt Thus the mean and autocorrelation of X,(t) are determined by time averages of 3(t). If 3(t) is as below 1 l 0 % T then 1 T 1 1 T 1 T T . T [0 s(t)dt= 5 and T/o 3(t)3(t—T)dt - 5—? [7| < 2 6.77 mz(t) = 0 => mx(t) = 0. Proceeding as in Ex. 6.41: ‘ t sz(t1,t2) = ./t; a e_a(t2—T)Rz(t1,T)dT = ./(')3 c—a(t3-r)a.2e-ﬁ|t1—1-|d1_ We note that: e-BIn—TI = c‘”“"’)' for t1 2 “r cam") for 1%; S 1' We now suppose that t1 5 t2 so the above integral becomes: t2 t1 sz (t1, t2) age—“‘7 cafe-5‘1 cBTdT + cafe/#1 c—ﬁrdT] 0 t1 (6““3”! — 1) + The autocorrelation of X is then RX (t1 a t2) ‘1 A ("4‘1")sz (1', t2)dT 2 _at1e_at2 [/41 eaf e'ﬁ‘r(e(a+ﬁ)‘r _ d1- : 0' e ‘ o a + ,6 t 1' (a—ﬁ)t2 (cu—B)? 0 a — 1 1 1 = 2 —at1 —at2 _ 2011 _ _ (a-ﬁ)t1 _ a' e e {a+ﬂ [2a(c 1) a_ (c 1)] a2_'32 _e-at2 -I3¢1 _ c-Bh ‘ah _] Letting t2 = t1 + 1', we see that as t1 —> oo transient eﬂ'ects die out and the autocorrelation becomes RZ(t1 a t2) _’ [c-ﬁag-41) _ Ec‘a(t2-t1 ...
View Full Document

## This note was uploaded on 11/11/2009 for the course ECE NA taught by Professor Najmabadi during the Spring '08 term at UCSD.

### Page1 / 8

153_Homework_No._3_Solutions_2005 - ECE '53 Harmonia!“...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online