ece 153 final

ece 153 final - ECE 153 FINAL EXAMINATION December 8, 2003...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE 153 FINAL EXAMINATION December 8, 2003 ' l. The random variables X and Y have the joint density 4xy, Os'xsl,Osysl fx,Y(x’y)- , . Find the density of Name: O L- UT‘ 0 06 £2(}):_ ____ 74g?(}727)d7/Gewmi Befrwswt/ I W-e int/5+ 'Szmufi‘amQO-Uél)’ 5a’hé{)’/ 05 51 05751 0557 s( 05 4—‘~ Name; 5 0 L. U TLC N 2. Let X1,X2,... be a sequence of independent identically-dis'tributed‘ random variables with density V ,2, 1 - 2 , 2 fx (x)= e 20 ,k=1,2,.... oo ~1— ELFCXu)]=fi*;—r—'0‘~Sx€ d7: Consider the non—linear operation ‘_ 0—- 0 . “V2.7? 00 z. X, X20 '2. 1 2.3.2523. F(x)= 3 GEE-r X -@ Olf , 0, x<0 . 26 _ .0: Sb thtth I i ‘ ~ 1 ow a esum v 2 ' varLI—‘(mj = z: {mm—(scam) 21'! n 1 u Sn= F(X‘) ~ 0" n 131 k - — 70"}1F is a consistent, unbiased estimate of the standard deviation 0. That is, E[Sn] = o' and lim Var [Sn] =0 new]: @ZEiF—(le=@2(% = o— Name; I 3. 1 X1 (t) and X2(t) are independent random telegraph signals (0 ) Nl N2(t X1(t)=X1(0)(-1) , X2(t)=X2(0) (-1) , Here N1 (t) and N2(t) are independent,'classical Poisson process with constant rates Al and 1.2 respectively. The random variables X1 (0) and X2(0) are independent of each other and independent of N1(t) and N2(t) with P<xl (0)=1)=p1 P(X2(0)=1>=p2 . Let Y(t) be the product Y(t) a. X1 (t) X2 (t) . Find the correlation function of Y(t) 5 é RY(t,s)»=E [Y(t) Y(s)1 EiW’WY‘Cw] = E[Xi(t221(t)z.(s)zl(5)] : E[Zt(W-§L(§)] E[Y1(f)X_2($/1 E {X} (timed : E [2:10) (~ Wily? — I 0 “N1, ‘5‘ ' [@Zwtt) ( )1 Because ECf)au0iX——2(f/ , are [MAQPQMAQM ll rt. w = € ‘ CerthdQ/V‘MV T149 Cage for win h “thtfigl ‘ EEC; 3 9_ 1):?{7-6! 9 tMtiQV‘(/ E Knit) 21(9)] 3 Q 90 Mad“ \anllx N —2(>L+,\2)(t~6l ElfttzffiM/J = Q 1745 wt hon/Le, Name: SOL-VTION 4. X(t) and Y(t) are independent, zero mean, wide sense stationary process with identical correlation functions Rx(1.')= Ry (1:) = R('c) and power spectral densities Sx (w)= Sy (w)=S(w) . Consider the new process Z(t) = X (t) cos (wot + 6) + Y(t) sin (wot + 9) The random variable 9 is independent of X(t) and Y(t) with density 2 E , OSBSJVZ 0 , otherwise . Show that Z(t) is wide sense stationary and express its power spectral density in terms of 8(a)) . ' E 2:55) 3 El t2l'c06(waf+9) +~EL fl] SLMCwat¢6~):O [ 3 KO V KO 1 QZWS) = ElZCf) EMU : Elmflflffl 005(wo‘tre)005(uw$+6t) ' +E [YWYWJ wwo‘tw) MGWS-Ft?) ’17: tug '+ E (XE/2(a) W(wo‘t+ 6) MCwo 5+5) + £5555)?ch 004 COWS-+5) MWdffla Name: gOLIZI (ON ' p 5. The input, X(t), and output, Y(t) , of a linear system are related via the differential equation 21m) + 3Y(t) = ix“) + X(t) . dt dt If the input is a wide sense stationary process with correlation function 1 41:] {w‘al’CLCu/f Rx<r)=§e , 6 6 0M: : 2a ‘0‘“ ‘ 2Hu 1 find the output correlation function RY(1:) . . Consider m‘ath‘auclam 25+) and Yet) 16 OLAT'QV‘MIWQ Traushw fuue‘f‘ww. ELEM) é yum») Ctr-e Faun-2r Transforms 2(Iw2‘Zcrw2 +3>Ztcw= (cwflWHZlo‘w) Haw-YEW; z [+5.20 XU‘w) 3+2£w 9‘0 \ r~ -161..wa l 9z(w.7~~06:2L6 6 0m - MHw: _ 7_ \ ~ \ _ lH-Lu/I ;J—'—1 SiLW)—1H(LW)ISX(W)” [3+2L‘W'7'H‘W _ -l .. __I_ 4% ‘ C’sz ‘1 (3i)z+w7~ ...
View Full Document

Page1 / 5

ece 153 final - ECE 153 FINAL EXAMINATION December 8, 2003...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online