필기록 #2

필기ë&...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
13. Fr equency r esponse Sunghoon Kwon Sl i de cr edi t : Pr of essor Roger Howe, St anf or d
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
A Second Order System v S ( t ) L v C ( t ) + - R C i L i R i C v L + - Wher e does t he i nduct or come f r om? ( ~ 1nH/ mm “ f or any wi r e” ) Do st ep r esponse: v S ( t ) j umps t o V DD at t = 0 t = 0 V DD
Background image of page 2
“Step Response” of R-L-C circuit v S ( t ) L v C ( t ) + - R C i L i R i C v L + - I ni t i al condi t i ons: v C ( t =0 - ) = 0 V & i L ( t =0 - ) = 0 A C L i i = ( 29 dt dv C t d t v L C t L = 0 1 + - = C C DD L v R dt dv C V v I nduct or vol t age: t = 0 V DD C L R i i i = = f or t 0
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Second-Order Differential Equation for  v C (t) dt dv C t d v R dt dv C V L C t C C DD = + - 0 1 Subst i t ut i ng f or v L : 2 2 1 dt v d C v R dt dv C V L C C C DD = + - Di f f er ent i at i ng bot h si des: DD C C C V v dt dv RC dt v d LC = + + 2 2 Rear r angi ng t er ms:
Background image of page 4
St eady- st at e sol ut i on: v C, ss = V DD ) ( t Tr ansi ent sol ut i on: v C, t r = ? guess v C, t r = ae st and subst i t ut e: ( 29 ( 29 0 2 = + + st st st ae ae RCs ae LCs Short Review : Solving the 2 nd  Order O.D.E. DD C C C V v dt dv RC dt v d LC = + + 2 2 ) ( t v S 0 1 2 = + + LC s L R s - ± - = LC L R L R s 1 2 2 2 2 , 1 : Char act er i st i c f unct i on Compl i cat ed…… - > Phasor anal ysi s! !
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Thr ee cases f or s1 and s2 Get t wo negat i ve r eal r oot s ( over damped) - ± - = LC L R L R s 1 2 2 2 2 , 1 LC L R 1 2 LC L R 1 2 = LC L R 1 2 < Get a si ngl e negat i ve r oot s ( cr i t i cal damped) I nt er est i ng case! ( Under damped) v C, t r = ae st
Background image of page 6
Under damped case 2 2 2 , 1 2 1 2 1 2 2 - ± - = -
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 52

&amp;iacute;•„&amp;ecirc;&amp;cedil;&amp;deg;&amp;euml;&...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online