12PSD - MAE 591 RANDOM DATA Spectral Density Functions i)...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
MAE 591 RANDOM DATA Spectral Density Functions i) Power in electric circuits: Case of D.C. : P Ri = 2 Case of A.C. : () P T Ri dt T RI f t d t R I av T a T == = ∫∫ 11 2 2 0 2 0 2 sin π I I f T a 2 1 , Arbitrary current : P T Ri dt RI av T T →∞ lim 1 2 0 2 I T id t T T 22 0 1 = lim ii) Power for any time function x t () : P T xtd t av T T = lim ( ) 1 2 0 iii) Wiener-Khinchin Relationship : the ensemble spectral density for stationary process is the Fourier transform of the ensemble correlation. Sf R e d xy xy jf = −∞ ττ πτ 2 RS f e xy xy ( ) τ = 2 d f In particular, when x t y t = , τ τ = τ π d e R f S f j xx xx 2 ) ( ) ( f e xx xx τ = 2 d f 2 + Property: 1) RE x t xx x x x [ () ] 0 2 = ψσµ =≥ d f xx 0 2) d xx xx = 2 τ τ π τ τ τ π τ = d f R j d f R xx xx 2 sin ) ( 2 cos ) ( τ τ π τ = τ τ π τ = d f R d f R xx xx 0 2 cos ) ( 2 2 cos ) ( df f f S f R xx xx τ π = 0 2 cos ) ( 2 ) ( iv) Two-sided power(auto) and cross spectral density for random processes x t ( ) and y t : XfT TT EX fT xx k () l im (,) lim [ ( , ) ] =< > = 2 2 1 Y fT EX fTY fT xy kk (,)(,) lim [ ( , ) ( , )] * * > = 1 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
MAE 591 RANDOM DATA Proof : Since, for an ergodic process { } xt () , Rx t x t T xtxt d t xx T T T () ( ) l im ) ττ =< + >= +
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/21/2009 for the course ME . taught by Professor . during the Spring '09 term at Korea University.

Page1 / 7

12PSD - MAE 591 RANDOM DATA Spectral Density Functions i)...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online