This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: MATH 101 TEST #1 Professor Brian J. McCartt'n October 25: 2000* l. {10 pts.) lGraph y = {105(217). 2. (10 pts.) Lot ﬂat) : g(:t) = s:2 — 3s. Find f o 9 anti g o f together
with their domains. 3. (10 pts.) Graph 1; = —( 4. (10 pts.) Graph 3; = = ln — 3) and ﬁnd a formula for its inverse
function. L'ﬂll— r a. (10 pts.) Express as a single logarithm: 21:13 —— ln2. 6. (10 pts.) Using the Squeeze Theorem, prove that 3
limatoos (—) = 0.
:s—rU :1:
T. [10 pts.) Evaluate
I + 3 lim mgr—3 31:2 + I: ~— 6 8. (10 pts.) Explain why ﬁrs) : is disoontinumrs at is = 3. I.e.: what type of discontinuity occurs at s: z 3? 333‘2 9. [10 pts.) Find the horizontal and vertioal asymptotes of y 2 £241. 10. (10 pts.) lf $3000 is invested at 6% annual interest, ﬁnd the value of
the investment at the end of four years if the interest is compounded:
a) monthly; 1)) continuously. (Do not try to evaluate enponontials.) *WARNING: snow has ﬂoss; “CAM \ o \ _—Te‘;‘r #iSekwkhﬁ Pméy, HSCWLM CD
Pa“ 94300 . . />.‘5a???.%?5¥%\%\r.ie~:¥%sss _ .1. .. \1. =. cask; __ __ : f gjmﬁw _ _ \
5.". 3:1“ Lx—B) m) 3*:— K—E =5.) ' _ _ .. L><43~<‘1=>’ ELK) r: E +ex. ®
" a in; +£411L§+Ai= Limb =EE37 A'MQQQUQ j; x..*,.._..._ kw X48: ' m
% X90) AIML _ .. . . ﬂ . :2. . “ MW> Q WQVotLké &Q5b«k\‘mw:‘\ ...
View
Full Document
 Spring '08
 Walker
 Math

Click to edit the document details