Ernst_Test_1_Fall_2007-1

Ernst_Test_1_Fall_2007-1 - Show ALL steps a f(e3X 3 x3 3 dx...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
\o~ ~f\C1~ ' MATH 102-02 - TEST 1 \' I NAME: J!.~I> /l'-""41) MS. ERNST . FEB. 5, 2007 1. (7 pts) Given fl/(x) = 2x + ;3' f'(1) = % and f(1) = -i· Find f(x). -) 1- 1. ~ ..• -"1.- X 7.. r ., ~. :.. f _ Z. . . i-/-I 'J/) ~_.I J -t '-2 ..•.(, L~-] 2. (8 pts.) Evaluate the integral using the Limit-Sum Definition. (Riemann-Sum) o f (x2 + 2x) dx o / 3. (7 pts.) Find g~ ~) given g(x) = J Jsint dt ;' If) ~ ~ (.7.) " I~ ) f' /Ij:, \1 ••. ;0$ l (oS '"-- l. \ - -- - 0
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4. (10 pts.) Find the area bounded by the curves. (Sketch the graphs) y = e', y = x - 1, x = 0, x = 1 'E:" - \ t- G) ( 'i/0 Sa. (16 pts.) Evaluate the integral numerically using the Trapezoidal Rule. SHOW ALL STEPS. (Round your answer to 4 decimal places.) 2 f 2x 2 dx, n-4 o x +4 - '" \1\ 53 5b. Find the exact value of the integral. 'C '- .••• b- '" ?(~\ Y " L\; c~ YJI) \ ~) ~(~) l~ ..L ~ ~ - I : )'- •. I, L\ r::;z ;I? 5 : 8;(j B ~ - -;:j N +- --- /,,2. L{ "II --- r /'2. 'L (2,; ",'1. I 8: ,.Jl. ~~'YI ~ - " v \ N N 'l\;~ N l\ l\;~N r-l t l l../'I 2-
Background image of page 2
6. (32 pts.) Evaluate the integrals.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Show ALL steps. a. f (e3X + 3' + x3 + 3) dx r \ -r e-,'}. . b. e x+ x3 f x2 dx 'f. . '!. .,-1. . .••-)< 'j.,1.-c. f sec2 (3x) dx d. x dx J .J9+x2 7. (20 pts.) Set up but do not evaluate the integrals that would find the volume of the solid formed by rotating the region bounded by the curves y = E, y = 2-x, y = O(x-axis) about the lines; [ DO NOT EVALVA TE THE INTEGRALS] [SKETCH THE GRAPH] a. y-axIs b. X -aXIS n J~. 6,/< __ Aswe. . •• f v~-rr)o (\2-'f~-,/'1.) Jy c. x=2 $'1l6L'-, v.,. 11')0 7..(z-y-yt.) dy ~7<:='"'\ ' •.. ~ .-....-;.---. L\ f. '-' p,>~ri.~ v'~1T ((1._y'l.)'L-It-lt.-'i'))1.\ J • ) y...
View Full Document

This note was uploaded on 11/23/2009 for the course MATH 102 taught by Professor All during the Spring '09 term at Kettering.

Page1 / 4

Ernst_Test_1_Fall_2007-1 - Show ALL steps a f(e3X 3 x3 3 dx...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online