Ernst_Test_1_Fall_2007

# Ernst_Test_1_Fall_2007 - ~ MA TH 102-02 - TEST 1q~ MS....

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ~ MA TH 102-02 - TEST 1q~ MS. ERNST U 10 NAME: ~ik\ 1Jr.rJ~ FEB. 5, 2007 <..J 1 (7 pts) Given {"(x) = 2x + _1, {'(I) = ~ and 1(1) = -~. Find I(x). I . X3' 2 6 ">(:;'-'~-'X- ~' ~J:: J(.Qx + ~) dl)( (1'003 "j:; = 5 C?<;l-b- ~ Q\)~ 1'1 J - L +-c J- I + (~J:: 'X ~ry:< f-(y):: :/Y+ Qx- + Q.x-l- d ~ = (1) - c2f1)+C-t:- ~ + ~ +J +-cI ~ :: ~ +c--7 '" IJ. + c( /J Vf) li/ " I C :. :J _ I d", _.6 1 p{Xl", f)(:L;i)(l +Q. ~} = ~)+ :i!:- f-Jx-3)' 2. (8 pts.) Evaluate the integral using the Limit-Sum Definition. (Riemann-Sum) J.\ n ( y,'.1 q~y'~ ) _ fV) 2 ()~ + n ()-~(X) \=1 1(fY\ l"'I (fi + {t) ::: L ~<XJ ~"1 rJy-= lit'tl l') 1\ .J;. 2 i~ + ! 2~ rq, O<l n'" ~.I oJ i::: J 2 f (x2 + 2x)dx o AX 6)-0- :; '-':. ()- n +(CA+ ~AX):: +( {) + (~n:. (~y ~ J l~') := 4 i~ _-+- LIt n~ n ::- '? (n 3-+.rt-r..Q. ) +..ft (~+ r) J (\3" T.:l cP (l ~ ~ :: X + *- r ~~ + Lf of ~"-./ Cl ~i~Y = r ~OJ 3. (7 pts.) Find g'( ~ ) given g(x) ~ ] .Jsin t dt j I ()() ~ b()- ~~0 (~) 9 I(~).: (J)[Si ~:;r)l :: ~J- [~51-1 ./ '"'1 A 4. (10 pts.) Find the ~bounded4....
View Full Document

## This note was uploaded on 11/23/2009 for the course MATH 102 taught by Professor All during the Spring '09 term at Kettering.

### Page1 / 5

Ernst_Test_1_Fall_2007 - ~ MA TH 102-02 - TEST 1q~ MS....

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online