Ernst_Test_1_Fall_2007

Ernst_Test_1_Fall_2007 - ~ MA TH 102-02 - TEST 1q~ MS....

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ~ MA TH 102-02 - TEST 1q~ MS. ERNST U 10 NAME: ~ik\ 1Jr.rJ~ FEB. 5, 2007 <..J 1 (7 pts) Given {"(x) = 2x + _1, {'(I) = ~ and 1(1) = -~. Find I(x). I . X3' 2 6 ">(:;'-'~-'X- ~' ~J:: J(.Qx + ~) dl)( (1'003 "j:; = 5 C?<;l-b- ~ Q\)~ 1'1 J - L +-c J- I + (~J:: 'X ~ry:< f-(y):: :/Y+ Qx- + Q.x-l- d ~ = (1) - c2f1)+C-t:- ~ + ~ +J +-cI ~ :: ~ +c--7 '" IJ. + c( /J Vf) li/ " I C :. :J _ I d", _.6 1 p{Xl", f)(:L;i)(l +Q. ~} = ~)+ :i!:- f-Jx-3)' 2. (8 pts.) Evaluate the integral using the Limit-Sum Definition. (Riemann-Sum) J.\ n ( y,'.1 q~y'~ ) _ fV) 2 ()~ + n ()-~(X) \=1 1(fY\ l"'I (fi + {t) ::: L ~<XJ ~"1 rJy-= lit'tl l') 1\ .J;. 2 i~ + ! 2~ rq, O<l n'" ~.I oJ i::: J 2 f (x2 + 2x)dx o AX 6)-0- :; '-':. ()- n +(CA+ ~AX):: +( {) + (~n:. (~y ~ J l~') := 4 i~ _-+- LIt n~ n ::- '? (n 3-+.rt-r..Q. ) +..ft (~+ r) J (\3" T.:l cP (l ~ ~ :: X + *- r ~~ + Lf of ~"-./ Cl ~i~Y = r ~OJ 3. (7 pts.) Find g'( ~ ) given g(x) ~ ] .Jsin t dt j I ()() ~ b()- ~~0 (~) 9 I(~).: (J)[Si ~:;r)l :: ~J- [~51-1 ./ '"'1 A 4. (10 pts.) Find the ~bounded4....
View Full Document

This note was uploaded on 11/23/2009 for the course MATH 102 taught by Professor All during the Spring '09 term at Kettering.

Page1 / 5

Ernst_Test_1_Fall_2007 - ~ MA TH 102-02 - TEST 1q~ MS....

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online