Richard_Exam_2_Practice_Winter_2007

# Richard_Exam_2_Practice_Winter_2007 - PLEASE S HOW A LL W...

This preview shows pages 1–4. Sign up to view the full content.

L Name and roughlY sketch translations of the origin' Shou'that 2 X, lirn -;- . does not exlst' (x,y)-+(0.0) x' + y- PLEASE SHOW ALL WORK the surfaces in three-dimensional space. Label any vertices and -1)z =x2 +(z+2)2 .11 b. -2xt -2Y'+z'=16 d. +y2 + 12 - 2r+22=0 e. 4x+8Y+22:16 -2 T. Y=X (l' 1 x- J *vo Flnd llfn --;-- ) : ' (x,Y)+(0,0) (x- + )'".)- For the fru-rction f(x' )'): 1'sxY' ' find f"' f'' and f'"' Do not simplify' 5. Suppose t: "E? . i. where x: ln(u2r') and y: sin(u2 11')' State and use an appropriate chain rule to find 9x ' Do not simplifv' 6.Findtherateol.changeofthevolumeofarightcircularc)4inderwhoseradiusisincreasingattherate of 0.5 nvsec and rvhose height is decreasing'at tl-re rate of2 m/sec a1 the instant that the radius is 2 m' and the height is 3 m' 7. Find rhe toral differential of ftx' y) - x:y + 2x' 8. Find and sketch the domain of the function f(x' y) g. Graph the functicxr f(x' .v) : 4 + x ' * yt ' Also' give the range of f' 10. RoughlysketchthelevelsurfaceofthefunctionF(x. y.z): *2 +y2 -22 thatcontainsthe point P( 1, 1, 0). 1 1. Find the equation of the plane that is tangent to the surface z: x'y +

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Answers 1a. Cone with vertex at (0' 1 ' -2) oriented in the direction of the y- axis lb. Hyperboloid of two sheets along the z-axis intercepts (0' 0' 4)' (0' 0' -4) 1c. Lower half of a sphere with center C(0' 0' 0)and radius r = 2 1d. SPhere, C(l, 0, -l)'r: Ji le. Plane: Axis intercepts (4' 0' 0)' (0' 2' 0)' (0' 0' 8) 1f. CYlinder alorrgthe z-axis 3. 0 O. rla-rt ,2xy2e*" +9*Y',2xyoe*" +3y2e*t' ' lplt*l . [# ] (zu "o'tu' * ur) 6. -2x 1. (2xY + 2)dx + x' dY 8. Domain(f): {(x,V) I V -2x>0}:Setof allpointsinthexy-platreabove g.Paraboloidopeninginthepositivez-direction.vertex(0,0,4).Range(f)= *' * y' - 12 :2' Hyperboloid of one sheet along tlie z-axls' ,= Qy +5! the line Y: {z\z> a\ 2x. 10.
I v MATH-203 EXAM 2 l. Name and roughly sketch translations of the origin. a. 4x+ 2v + 3z:12 PLEASE SHOW ALL WORK the surfaces in three-dirnensional space. Label any vertices and l- -- y2 +27 =4 d. x2 +y2 +22 +2x-4y-62=0 -A -_y C. e. -2x2 +3u2 -422 =12 f. z=t - 1x2 + y2; 2. Find and sketch the dornain of rhe function f(x, y) : ln(1,2 _ x). Graph the function flx, y) : J" t + y 2 . Also, sive the donrain and ranse of f. Roughly sketch the level surface of the function F(x, y, z): - 2x2 + y2 + 322 that contains the point P(0. l. I ). 3. A a. For the function f(x, y) : 2y sin(x 2y; . nna t. Suppose z: ln(ts2 + t) , where s : e"Y' and t chain rule to find @ . Do not simrrlifv. ay 1,. and f^,. Do rrot sinrDlifv. f--- " : tl2y + x' . State and use an appropriate 7. 8. 9. l0

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 14

Richard_Exam_2_Practice_Winter_2007 - PLEASE S HOW A LL W...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online