Richard_Exam_3_Practice_Winter_2007

# Richard_Exam_3_Practice_Winter_2007 - M ATH-203 E XAM 3 l L...

This preview shows pages 1–6. Sign up to view the full content.

MATH-203 EXAM 3 PLEASE SHOW ALL WORK l. LetF(r. 1- z\=x>t^ rz' a. Find the sradient of'F at the point P(2. 2' -l )' b. Find the Jirectional derivative o{-F at 1he point P(2^2. -1) in the direction of the vector :i+ +i - zri . c. Find the equation of the tangent plane to the surl-ace *v,t + z-- -5 at the point P(2'2' 1)' 2. Use the method of Lagrange Multipliers to find the rnaximurn and minimum values of ri-. vi: xy3 subject to theionstraint xr + y2 :44' 3. Find and classif, all relative extema and saddle points of f(x' y): xy - *'- yt' -1. Let D be the region in the first quadrant borurded between the graphs of x: yt + y and y -- x ' a. Sketch thc region D. b. Write a double integral in rectangular coordinates which gives the area of D' Do not integrate' 5. Let S be the solid bouncled the graphs of z: | (*t +yt) ar-rd z: 0. the solid S. in rectangular coordinates which sives the vctlumc of S. Do not integrate' r Jrl 6. Consider the J j x'e*v dx dy' 0v/ the region ofintegration' b. Reverse (interchange) the order of intesration. Do not integrate. I lr 7. lrvaluate iterated f i (3xv' + 2x)dy dx '

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Answers -40 l. <-2,-2.13> ,o -#, 1c'-2x-2v+l3z---)1 2. Maximum value of f(2, 6) : 432'Minimum of f(2' -6) = 432 3. Saddle point at (0,0), Relative Maximum " [:';) I loy 4b J J axaY uy+y 5a. Solid is bounded above by the paraboloid z | -(*t * y' ) and below by the plane z: 0 overthe region bounded inside the circle x2 * yt 1' I Jr-t sb. [ ltt - x' - v'; dvdx ., i: -r-rl l-x' l3x 24x2 uo I i x2e-YdYdx + x'e"dYdx 00 I 0 43 1. 30
MATH-203 EXAM 3 PLE.{SE SHOW ALL WORK I . Find and classif' all relative extema and saddre points of f(x, y) : xa * gxy + 2y2. 2. Let F(x, y, z): y'z' + xtz. a. Find a vector that is perpendicular to the surface y'23 + x'z: l0 at the point p(l, -1, 2). b- Find the directional derivative of F at the point P( l, -1, 2) in the direction of the vector i-zj+:L. c. Find the equation of the tangent plane to the surfac " yrr. + x3z: l0 at the point p( I , _l 2). 3. Use the T"lh.odr:f L,ugrange Multipliers to find the maximum value of (x, y): xy2 subject to the constraintx- + y' -- 12. consider integrat J "f .rt"1r* + y) dy dx . 02 Sketch the region of integration. Rer erse (interchange) the order of integration. Do not integrate. Let D be the region bounded between the graphs ofy = l0 - 2x, y 2, y= 4, and x Q. the region D. write a double integral in rectangular coordinates that gives the area of D. Do not integrate. Let S be the solid in the first octant bounded of 2x + y + z: 4 and z: 0. the solid S. Write a double in rectansular coordinates which gives the volume of S. Do not intesrate. 7. Evaluate the iterated intesral y' i (*y' + y)dx dy. 2 2 b. 5. a. 6. 2 j 0

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Answers 1 . Relative minimums of f(2, 4) : -16 f(-2, -4), Saddle point at (0. 0)' 2a. 6i- l6i + 13k 71 'n "ltq 2c. 6r -161'+ 132:48 3. Maximum value of f is l6 at the points Q, Jg ) and (2, - "6 I Il l ll 3 4b I J sin(2x+Y)dxdY 20 t!:r 12 sb.A:l J dxdy z0 / fv 6b.v:j I fq-2x-y)dydx 00 1.8
PLEASE SHOW ALL WORK NIATH-203 EXAM 3 l. a. b. Let F(x, y, z): yz3 + xz.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 16

Richard_Exam_3_Practice_Winter_2007 - M ATH-203 E XAM 3 l L...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online