Cs umass_approxlp

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: X l ” Y l f X  e ” Y e £ e ” Y e ” Y X ¥ e f e  X ¥ B V gE r R r g p @mkU g F ”X —d p F ­ XDy ­ — `iqibWgF`xuEqtbEXDrfietxg sp geiRFtR™kqVWBr FiBk Xp{”Ibqrg hSBsiÀB ‰¶`R8wWg `”SEf‰V—r WBeDfXu4SRDVg8 u— X€SRIRsgB r agSp˜VmFFXiRrk—B QkdaBg !‚XI8hEtRY iR4@ixgrD Ixvr!tpXaEB WDIYxhmf…`VkErhV tRFSEE WD!™8CiBB gg€FTx@ qfgr b ‚cu8Dg CcdQ‘SY IBG¥diÀQB— r zPgaBvPV8 QY`”tBc!SYGr IBCGE i8rg nSzWBWVSYtB•gG 4I8x FsgVk ¶g”g xd xtREq — BT E D V 8 g‘ ks g”xr ieXtRq€`RE I8”gFfFWEB g D SV•PBVD c4IVg8 iR tBQRiR°™kmFtBk h€XQprBQRB m™kqmVBB fWeFQYk FiE R tBdSGg aD4`RV ‰CWBSBB E QRu8sg8 [email protected] 8 uPBr cPBDfvsQRIV­ 8 S‘umQYV B SRFmGktBB QR€Srk €•smSzB—B SRQpB SpFWk B mWVB iRqtBgFiR`Rlp`REg ‚°£HGtBg•IRgrFaE g gV°F|yX`V@ B g”9TFWDX€WD8B CuVr FctbA‚ar­ Q8tBxiG‘ vYuIg” STqSVh VWBPBeDCi8 hFuF4WDDV—8 g B SRXudwiRTVB @ FSRfa8SpumiRBV €tgk gRsqm‚tRpgr iRg FuAQRVk E iR‰sWDrtgBu8g m`Vp FQRf9t8Bw XFIREB D·”’‚PVt8FiBDQE `pfeEx tYV„Eh gmBh h R B 8SV kSY G E `”E ru8 D XRf k XEg V 8 D r r gB k gs B Y g h( e o F F —P i…Š p X BX g kr h E B g Yp rR Br x Yp r † B B V ” mftr§dmukuGarX•`VXx™8uXk QbgBFtwarXhSYIBGC‰ˆfSzWBWVSYj XWDxtYvr©tR‰`VWg‘ir SbdXgbxE iB twmarg HzXarY sXSVp ftpB ·E“¬†W†u‰SR«V mFw€`VBQRVkaD QpFmWDBE F§“RVk !irtR’ XagB VaDcWYVeE tYPVvrFxgxir”8 tR“xnag’ ir Vi dmib‘E Å mHzaBWrXXtrYY Fip h d`pg ³E Y B ¢ ˜  tÄÄ 5 # £ © "   2 1 6¦¤(403¦¥ )  " © ¥ # " !   § § 0('&6$¨™¦¥  4© )  " © ¢ ¤ ¢ 0('4Ž¥£ ¤y$¡x  © ) "   (a) Approximation solution for Vertex-Cover (b) Approximation solution for Independent-Set Optimal solution for Independent-Set Optimal solution for Vertex-Cover (c) ˜ c 3 1 0 • 42#! ) c ¥ %" ! &$ ˜ Y E g E E V b E E g Y p E x p — r b E g B V E B B‡ ‚Q8tBQGiBXeDt—4VFaDXaD{VagtYIrih`xwIRirWgVdibmHzarXX`pxQkaBVQEi—igXqIbr9aBtYqCu8&[email protected] `TWg`VaBSYaEXqF™k—BD tRWBtVdXWbrE °vrIYR €P”B •€ukBQYw pXIrÅ XPDQÅ4·VđÄ8 ’ x r g p « EE g b B Bk V B D ­ V V — B V h — h B B UV‘ tRirWgr `VdEE ibfHzarE XDY Xtp·EB †w q4i8¥— XaD{VagtYV Irih`xE txmd·—SrEV gbfag† zmd9hBbrtpEV QksgwagYa—Q8r XCBtBGsYr `wr 4³E X‘B aDjaBtYvr”aBSYFcv‘  E  v QimrcXaD4XiRPga8I8arYdQ8IBmQkfXaDX`”uix`xCIBHGFj‰V™8€vVw`RSEhIRirWgmirtxWr8 VXWD`VtTWBIYqWbQYXWDWVXFvm`« tj  V v VFaDV jXE8 ek— tYWDVfAV@ XSYh FWD`V•iR‚IYR uuQTmrk &X‘B E WDva8I8arYE fB— u`Vr X!mdtRFWD† CFmr&XWDva8V I8arY‚Q8tBXDh fQkg B Br B r g V r V — V r R r k E V — k V — B V — Q‘aButYV gRq€CX`VpbrIgr FFSREk WDweD™8t—gBigQEXvqIYpBx ibvrg CSBmFtRpIRr [email protected] CfmSTV¼ SrFcfFcWDDBr—8 yQ8t‘WBBW8u—u4Wrg8 [email protected]`VV rF&CtBWDvQka8I8arB eDYI—cQE— `VdXa8rB ‚XfIrBRQ8 mrr —f`VXFWDsirtRV tBWgm`Vh ™kFq‚eDt t—yQE¼ `”‚Ua8rB HµumXukRBV PgIr“8rfd‡Fs·DÂEtR¬ P†£ uV”FiBB WD´x &ge‡`Yax¬ yuE 4qXibBg¹ix c¬­ B¶ ” ‘— V ­ — F ˜ ˜ ‡ P ' % (&$ # ¥ ‡ 9 ' % (&$ # ‡ P ¥ ‡ 9 Y q ¥‡ ‡ i £ ‰  Y q ‡ ‡ 9 Y q ‡ ‡ P ‡ f c a Y db`  X T£ µ X´ ...
View Full Document

This note was uploaded on 11/24/2009 for the course CS CS648 taught by Professor Surenderbaswana during the Spring '08 term at University of Massachusetts Boston.

Ask a homework question - tutors are online