{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lab11 - Riti Gupta/20249537 Section22/Lab11 1 a X=[0:23...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Riti Gupta/20249537 Section22/Lab11 1. a.) X=[0:23]; Y=[809, 528, 499, 632, 1109, 3051, 4958, 4877, 4574, 4276, 4062, 4204, 4117, 4183, 4474, 4685, 4838, 4869, 4425, 3377, 2659, 2439, 1965, 1119]; X1=[0:(5/60):23]; Y11=interp1(X,Y,X1, 'nearest' ) Y12=interp1(X,Y,X1, 'linear' ) Y13=interp1(X,Y,X1, 'spline' ) plot(X,Y, 'go' ,X1,Y11,X1,Y12,X1,Y13) title( 'Interpolation of Traffic Data' ) legend( 'data' , 'nearest' , 'linear' , 'spline' ) xlabel( 'Time(in hours)' ) ylabel( 'Number of Vehicles' ) (did not include matrices because too much data) b.) X=[0:24]; Y=[809, 528, 499, 632, 1109, 3051, 4958, 4877, 4574, 4276, 4062, 4204, 4117, 4183, 4474, 4685, 4838, 4869, 4425, 3377, 2659, 2439, 1965, 1119, 809]; X1=[0:(5/60):28]; Y11=interp1(X,Y,X1, 'nearest' ) Y12=interp1(X,Y,X1, 'linear' ) Y13=interp1(X,Y,X1, 'spline' ) plot(X,Y, 'go' ,X1,Y11,X1,Y12,X1,Y13) title( 'Interpolation of Traffic Data' ) legend( 'data' , 'nearest' , 'linear' , 'spline' ) xlabel( 'Time(in hours)' ) ylabel( 'Number of Vehicles' ) (again, too much data output) 0 5 10 15 20 25 0 1000 2000 3000 4000 5000 6000 Interpolation of Traffic Data Time(in hours) Number of Vehicles data nearest linear spline
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
The extrapolated values do not look reasonable because according to the data given, the value of the extrapolation exceed the data by a great amount. You cannot have traffic counts that are less than zero and it is not physically meaningful because the lowest you can get is zero cars.
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}