{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Assn1Sol - 2 represent assuming it is an unsigned integer...

This preview shows page 1. Sign up to view the full content.

CDA 3101 Assignment 1 Solutions Solutions are in blue. 1. Convert 1111 1111 1111 1111 1111 1111 0000 0110 2 to hexadecimal without converting it to decimal first. FFFFFF06 16 2. Convert 1111 1111 1111 1111 1111 1111 0000 0110 2 to octal without converting it to decimal first. 37777777406 8 3. Convert ABCD 16 to binary. 1010101111001101 2 4. Convert 10101010 3 to decimal. 10101010 3 =1*3 7 +0*3 6 +1*3 5 +0*3 4 +1*3 3 +0*3 2 +1*3 1 +0*3 0 =2187+243+27+3=2460 5. How to represent decimal numbers 15 and 31 in 8-bit unsigned base –2? (Note that, it is –2, instead of 2.) 15=10011 -2 31=1100011 -2 6. Problem 3.2 from the textbook. 1111 1111 1111 1111 1111 1000 0000 0001 2 7. Problem 3.4 from the textbook. –250 10 8. What decimal number does 1111 1111 1111 1111 1111 1111 0000 0110
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 represent assuming it is an unsigned integer. 4294967046 10 9. What decimal number does 1111 1111 1111 1111 1111 1111 0000 0110 2 represent assuming a sign-magnitude integer representation. -2147483398 10 10.-128 10 = 10000000 2 in 2’s complement form. The negative of the left hand side (-128 10 ) is 128 10 . What do you get when you negate the 8-bit 2’s complement representation on the right? Explain this discrepancy. You get 1000 0000. The reason for this discrepancy is that 128 can not be represented as a 8-bit 2’s complement number; the maximum value that can be stored is 127....
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online