This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: tgo72 Homework 5 Gompf (58370) 1 This printout should have 18 questions. Multiplechoice questions may continue on the next column or page find all choices before answering. 001 10.0 points Determine the integral I = integraldisplay 1 1 + 16( x 3) 2 dx . 1. I = tan 1 4( x 3) + C 2. I = 4 sin 1 parenleftBig x 3 4 parenrightBig + C 3. I = sin 1 4( x 3) + C 4. I = 1 4 tan 1 4( x 3) + C correct 5. I = 1 4 sin 1 4( x 3) + C 6. I = 4 tan 1 parenleftBig x 3 4 parenrightBig + C Explanation: Since d dx tan 1 x = 1 1 + x 2 , the substitution u = 4( x 3) is suggested. For then du = 4 dx , in which case I = 1 4 integraldisplay 1 1 + u 2 du = 1 4 tan 1 u + C , with C an arbitrary constant. Consequently, I = 1 4 tan 1 4( x 3) + C . keywords: 002 10.0 points Determine the integral I = integraldisplay 2 8 4 + x 2 dx . 1. I = 1 2 2. I = 3 4 3. I = 5 8 4. I = correct 5. I = 7 8 Explanation: Since d dx tan 1 x = 1 1 + x 2 , the substitution x = 2 u is suggested. For then dx = 2 du , while x = 0 = u = 0 , x = 2 = u = 1 . Thus I = 4 integraldisplay 1 1 1 + u 2 du . Consequently. I = bracketleftBig 4 tan 1 u bracketrightBig 1 = . keywords: 003 10.0 points Determine the integral I = integraldisplay 3 2 7 9 x 2 dx . 1. I = 7 3 tgo72 Homework 5 Gompf (58370) 2 2. I = 7 4 3. I = 7 6 correct 4. I = 7 6 5. I = 7 3 6. I = 7 4 Explanation: Since integraldisplay 1 1 x 2 dx = sin 1 x + C , we need to reduce I to an integal of this form by changing the x variable. Indeed, set x = 3 u . Then dx = 3 du while x = 0 = u = 0 and x = 3 2 = u = 1 2 . In this case I = 21 integraldisplay 1 / 2 1 3 1 u 2 du = 7 integraldisplay 1 / 2 1 1 u 2 du . Consequently, I = bracketleftBig 7 sin 1 u bracketrightBig 1 / 2 = 7 6 . keywords: 004 10.0 points Determine the integral I = integraldisplay (1 x 2 ) 1 / 2 3 4 arcsin x dx . 1. I = 1 8 (3 4 arcsin x ) 2 + C 2. I = 1 8 ln  3 4 arcsin x  + C 3. I = 1 8 ln  3 4 arcsin x  + C 4. I = 1 3 ln  3 4 arcsin x  + C 5. I = 1 3 ln  3 4 arcsin x  + C correct 6. I = 1 3 (3 4 arcsin x ) 2 + C Explanation: Set u = 3 4 arcsin x . Then du = 4 1 x 2 dx = 4(1 x 2 ) 1 / 2 dx, so I = 1 3 integraldisplay 1 u du = 1 3 ln  u  + C with C an arbitrary constant. Consequently, I = 1 3 ln  3 4 arcsin x  + C . keywords: 005 10.0 points Determine the integral I = integraldisplay / 2 cos 1 + sin 2 d ....
View Full
Document
 Spring '08
 RAdin
 Calculus

Click to edit the document details