# 08.01 - 8.1 SEQUENCES"1)2(—1)3_1(—1)4_1(—1)5_1 3...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 8.1 SEQUENCES ._("1)2__ (—1)3__1 _(—1)4_1 _(—1)5__1 3 31—2—1 1’32—4—1— 3'33—6—1—5'34—8—1— '7 _ W 1W3 W3 1W7 W7 1m15 W15 1_31 _63 7 al—1,32—1+§—§,33—§+§z—3,a4—3+§5—f,35—f+§;—ﬁ,a6—ﬂ, 127 255 __ 511 _ 1023 a7_ﬁ’a ‘ﬁ’a9—2T’310— 12 11. a1_Lag-1,33—1+1—2,a4_2+1—3,a5—3+2—5,aﬁ—8,a7_13,ag_21,ag—34,a10:55 15. all z (—1)“+1n2, n = l, 2, 19. anz4n—3,n=1,2,... 23. n [gum 2 + (0.1)“ 2 2 2} converges (Theorem 5, #4) ' l—an - (i)—2W . _2W_ 25' 11131100 l+2n ‘nleoo (ff; 2 -H_,moo T — 1 2> converges 1 ' l—Sn‘ __ - (1:7)“.5 __ _ 11!me 1114-8115 _n!Lm°o 1+”) — 5 => converges 29. lim w: lim w: lim (n—1)=oo :diverges “.500 n 1 11—100 11 l n——>oo ("Fun-H Zn— 1 - l2 __ / - 2 _ - 2 __ 37. "1351100 “:1- "13411100 n:1_\nlem (m)_\/§:>converges 41. lim Sin—" 2 0 because — i 5 ’1“ S 3-1 => converges by the Sandwich Theorem for sequences 31. lim (1 + (—1)”) does not exist => diverges 35, “131100 2 0 2“) converges - ln(n+l) __ - n __ ' _.._ ' .... 45. In11in00 7;— —nl_g'nCJO 7%? —ngmm n+1—n_’m00 m —0 => converges 47. nlwimigr}co 8”“ = 1 => converges (Theorem 5, #3) 49. lim (1 + 3-1)“ = e7 :> converges (Theorem 5, #5) - n! __ - 1-2'3"-(n-1)(n) - 1 __ n! - n! __ 59. “131100 a; —nleoo SEIng (a) —0and 11—“- 20 => nleoo a; —0 => converges ...
View Full Document

## This note was uploaded on 12/05/2009 for the course CAL Cal2 taught by Professor Cal during the Spring '09 term at Abu Dhabi University.

### Page1 / 2

08.01 - 8.1 SEQUENCES"1)2(—1)3_1(—1)4_1(—1)5_1 3...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online