{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Exam+2+Solutions

# Exam+2+Solutions - SSN Spiing 03 Exam#2 1 Write ALL...

This preview shows pages 1–7. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SSN: ' Spiing 03 Exam #2 1. Write ALL equations in their most general form and then begin simplifying. State/list all your assumptions when you are simplifying the equations. , 2. Check your units! 3. 'Box your answers and provide units. Ph sical Pro net-ties of Water _ 2 , II— 9790 Nm 62AM l._ 998kg/m 1.94slugs/ﬁ .- 0- - .- 0- m 0.00131 Ns/m 001 N-s/m 2 73x10-5 lbfes/ ‘ ' 0.073 N/m 073 N/m 0 05 lbf/ﬁ 1230 N/m abs 2340 N/m abs 0.178 sia Temperature Conversion: T (R) = 460 + T (°F) _ . T (°K) = 273 + T (°C) Gravitational Constant: g = 9.81 m/sec,2 = 32.2 l’t/sec2 lbf= mass (slugs) x g (ﬁ/secz) ‘ N = mass (kg) x g(m/sec2) In cylindrical coordinates for a circular cross-section: ‘dA = 21ndr In cartesian coordinates (x-y) dA=dxdy Short Answer (2 points each) * (a f t O s the velocity of ﬂow increases 1. According to Bernoulli’s equation for a wa W the deer » , dim/r 3‘13 A E, wwm 2. I Give a verbal description of the following term 35; IpdV ’ km. MR 3 C/QM‘wxit sf Me,“ Afﬁgg ”1» CV 3. Why (in mathematical terms) is ﬂow out of a control volume always positive? «am—3...) . \i _ [’1 ) C; 51mg \l h 3“; 7"‘C-E-2206FiuidMeehaiﬁes/Willson , - » i - ., —— , ~--»--- 71» 4. When applying Euler’s equation, 2 is always positive in what direction? 5. Are terms on the right hand side of the control volume equaﬁom'Eulerian or Langragiau? Eulen'an W o 6. (15 points) The pressure gage at pt. 1 measures 16 mmHzO. A pitot probe indicates 24 / ' mm of water. Calculate the velocity of the air. The density of the air is 1.203 kg/mS. Pf. \Lo \rwmkr Q1... " 24 6:”er €6‘ir “‘23 ll 17. v t P" —.1 + ’l’ ’L L {' VD de \bf _ zeihuu/r t. 1 t. ‘g'a'ﬁi L? a [4.47 ' t .r \ 264,3 Q A 7 = , L \I“? Xumﬁwoah ( E \) 7 (15 points) A velocity ﬁeld' In a parucular ﬂow 18 given by V: 20y? i- 2(1ny 111 m/sec. ()0 1‘5? _ ._%_--_. - a. Calculate the velocity at the point (1, -1 2). . ‘ \1 :70011 : 2001(7) J s20f4—"203 % 1/ ./ b.0CaIcu1ate the acceleration at the point (1 -1, 2) D3111$4L+w 191 (£111) {9:260 7X ax: 0)] 420% 9024037 '- ‘0 a =9 +1193+v91+ %. .3 91:,22 9x 93 . arm 214% (W ”3701 '201) "9116799 1 <7 4 9:; >3 ' :1 939’ 31’ ’QZW/ﬁ ‘91- )lj é=L )2;n ._ 14;}, ‘ 8. (20 points) Water ﬂows through ' ntal pipe bend and exits into the atmosphere (seeﬁgm‘eheiow):'fheﬁewrateis . ISee-———~~—— ,, ~ wvv——-—~——-—-— buzg’Jf» L/ \/l = 0%)“! 26/19/51 A mm‘ a. (7 points) Calculate the pressure [email protected] V 1 0'3 X L! / ' a 2 v‘ m m 2512”qu f ?\/ a a 0-) ) mﬂmf; “(“613 - L b. (13 points) Calculate the force in each of the rods olding the pipe bend in position. -F,(+ 54le7l_(0‘2/5)L= — vl-CQ ~6-nwame W; Y W \/ e \‘VV‘ ‘4’ d a é L! - :31 , I . z . / Uyﬁo‘ V x 2 5! [é [hi/H3 9. (15 points) A tank of liquid (S=O.9) that is 4 f: in diameter and 1 ft high is rigidly ﬁxed to a rotating arm having a 3 ft radius (F3 11). The tank rotates about the axis such that the rwioeiﬁLafpt€is 75 ﬁne: Ifthepressufeat—Aésrzopsﬁ—whaﬁsﬂae-WGQ—m——— » r , Z Y; K} . 6» 55-h; —— z "3”! stu 3‘ 32-2 W” a): +S/5- 7. ugad/g/ / / [1: ’ /. ‘/ 2"- 20 , Iwrg = F6 + fé./5x0,g—,,,ﬂ§(’sz_ 2 / ,1 19 (1'0 points) Ifthe piston and water are accelerated upward at a rate of 0.5g, what will be me 121635136 31 a dnpth of2 ﬁm water column? (mmgsyaxozéxaz; 3/3 = LBL _ 9W2) 32' 3'2. ,ZSL'LZﬁ : "23‘, \‘ / ‘ az. '7 ‘21; 5 3533.134 , (5.141324) 94 AT ”‘3 70M— 2- JH) L..:::[email protected]/ (sea A 11. (15 points) Water ﬂows 1n and out of a device as shown In the ﬁgure below. Calculate the rate of change of the mass of water (i. e ,'dm/dt) 1n the device. (Q; VA= 304;; (11304118? 56 : I. 117 FAQ/Se ( ,1 1 New is MCéegi’ 1,2, ‘9“ aﬁ grin camuxzvxhaa chose. Hewﬁueo, Ho‘s" wee/1‘5 Mass fs'acCuwoiquxcj :11 ”PL: 5354mm, BONUS (2 points) Why does the dmgys/dt term equal zero when deriving the conservation of mass (i. e., continuity) equation? . \/ haemosz q 8535wa how 9$.59: Gimwvd' o‘F @MQSS aﬂd M: COUA Muﬁr Chaim-\$2 ...
View Full Document

{[ snackBarMessage ]}