# soln2 - max(X-Z) ). 5c. By lowpass Fltering the original...

This preview shows pages 1–2. Sign up to view the full content.

EECS 451 SOLUTIONS TO PROBLEM SET #2 1. # a b c d e f g h i j k l m n S Y N Y N Y Y Y Y N N Y N Y Y L N Y Y Y N N N Y Y Y N Y N Y TI Y Y N N Y Y Y N N N Y N Y Y C Y N Y N Y Y Y Y N N Y N Y Y S Y N Y Y Y Y Y Y N Y Y Y Y Y Key: S=static; L=linear; TI=time-invariant; C=causal; S=stable. 2. # a b c d e f g h True ? Y Y Y Y Y N N Y 2i. Consider T 1 { x ( n ) } = x ( n + 1); T 2 { x ( n ) } = x ( n 2) → T 1 T 2 { x ( n ) } = x ( n 1). Consider T 1 { x ( n ) } = e x ( n ) ; T 2 { x ( n ) } = log x ( n ) → T 1 T 2 { x ( n ) } = x ( n ). 3. 2.10: Since system is time-invariant, advance x 3 ( n ) by one: { 0 , 0 , 1 } → { 1 , 2 , 1 } . Suppose system linear. { 0 , 0 , 3 } → 3 { 1 , 2 , 1 } = { 3 , 6 , 3 } n = { 0 , 1 , 0 , 2 } . Nonlinear . 3. 2.11: Since system linear: x 1 ( n ) + x 2 ( n ) = δ ( n ) y 1 ( n ) + y 2 ( n ) = { 0 , 3 , 1 , 2 , 1 } . x 2 ( n ) + x 3 ( n ) = δ ( n + 1) y 2 ( n ) + y 3 ( n ) = {− 1 , 2 , 2 , 3 } . Not time invariant . 4a. y ( n ) = ∑∑ h ( i ) x ( n i ) = i h ( i )( n x ( n i )) = i h ( i ) n x ( n ). 4b. (1) { 1 , 2 , 4 } ∗ { 1 , 1 , 1 , 1 , 1 } = { 1 , 3 , 7 , 7 , 7 , 6 , 4 } . Check: (7)(5)=35. (2) { 1 , 2 , 1 } ∗ { 1 , 2 , 1 } = { 1 , 4 , 2 , 4 , 1 } . Check: (2)(2)=4. (5) { 1 , 2 , 3 } ∗ { 0 , 0 , 1 , 1 , 1 , 1 } = { 0 , 0 , 1 , 1 , 2 , 2 , 1 , 3 } . Check: (2)(4)=8. (7) { 0 , 1 , 4 , 3 } ∗ { 1 , 0 , 1 , 1 } = { 0 , 1 , 4 , 4 , 5 , 1 , 3 } . Check: (2)(-1)=-2. 5. See overleaf. Easy to conFrm Z=X to roundo± error (check

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: max(X-Z) ). 5c. By lowpass Fltering the original signal, we have halved its bandwidth. Hence the Nyquist rate is also halved, and we can downsample or subsample (take every other sample) without losing information. 1 2 3 4 5 6 x 10 4-0.5 0.5 1 2 3 4 5 6 x 10 4 200 400 600 0.5 1 1.5 2 2.5 3 x 10 4-0.5 0.5 0.5 1 1.5 2 2.5 3 x 10 4 100 200 300 1 2 3 4 5 6 x 10 4-0.5 0.5 1 2 3 4 5 6 x 10 4 200 400 600...
View Full Document

## This note was uploaded on 12/10/2009 for the course EECS 451 taught by Professor Andrewyagle during the Spring '08 term at University of Michigan.

### Page1 / 2

soln2 - max(X-Z) ). 5c. By lowpass Fltering the original...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online