Ch_5_4th_Ed

# Ch_5_4th_Ed - CHAPTER 5 Section 5-2 5-1 a The parameter of interest is the difference in fill volume μ μ 1 2 H μ μ 1 2 = or μ μ 1 2 = H 1 μ

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CHAPTER 5 Section 5-2 5-1. a) The parameter of interest is the difference in fill volume, μ μ 1 2- H : μ μ 1 2- = or μ μ 1 2 = H 1 : μ μ 1 2- ≠ or μ μ 1 2 ≠ The test statistic is z x x n n 1 2 1 2 1 2 2 2 =-- + ( ) ∆ σ σ x 1 = 16.015 x 2 = 16.005 δ = 0 σ 1 = 0.02 σ 2 = 0.025 n 1 = 10 n 2 = 10 z 2 2 16 015 16 005 0 02 10 0 025 10 0 99 =-- + = ( . . ) ( . ) ( . ) . P-value = 2 1 0 99 2 1 08389 0 3222 ( ( . )) ( . ) .- =- = Φ . Since p-value is greater than 0.05, we do not reject the null hypothesis. b) Power = 1- β , where β σ σ σ σ α α =-- + ---- + Φ ∆ ∆ Φ ∆ ∆ z n n z n n / / 2 1 2 1 2 2 2 2 1 2 1 2 2 2 = +-- Φ- +- Φ 10 ) 025 . ( 10 ) 02 . ( 04 . 96 . 1 10 ) 025 . ( 10 ) 02 . ( 04 . 96 . 1 2 2 2 2 = ( 29 ( 29 ( 29 ( 29 91 . 5 99 . 1 95 . 3 96 . 1 95 . 3 96 . 1- Φ-- Φ =-- Φ-- Φ = 0.0233 - 0 = 0.0233 Power = 1 - 0.0233 = 0.977 c) ( 29 ( 29 x x z n n x x z n n 1 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 1 2 2 2-- + ≤- ≤- + + α α σ σ μ μ σ σ / / ( 29 ( 29 16 015 16 005 196 0 02 10 0 025 10 16 015 16 005 196 0 02 10 0 025 10 2 2 1 2 2 2 . . . ( . ) ( . ) . . . ( . ) ( . )-- + ≤- ≤- + + μ μ- ≤- ≤ 0 0098 0 0298 1 2 . . μ μ With 95% confidence, we believe the true difference in the mean fill volumes is between - 0.0098 and 0.0298. Since 0 is contained in this interval, we can conclude there is no significant difference between the means. d) Assume the sample sizes are to be equal, use α = 0.05, β = 0.01, and ∆ = 0.04 ( 29 ( 29 ( 29 ( 29 , 08 . 2 ) 04 . ( ) 025 . ( ) 02 . ( 33 . 2 96 . 1 z z n 2 2 2 2 2 2 2 2 1 2 2 / = + + = + + 2245 δ σ σ β α n = 11.79, use n 1 = n 2 = 12 5-2. The parameter of interest is the difference in breaking strengths, μ μ 1 2- and ∆ = 10 1 H : μ μ 1 2 10- = or μ μ 1 2 = H 1 : μ μ 1 2 10- or μ μ 1 2 The test statistic is z x x n n 1 2 1 2 1 2 2 2 =-- + ( ) ∆ σ σ = 1 x 162.7 x 2 = 155.4 δ = 10 σ 1 = 1.0 σ 2 = 1.0 n 1 = 10 n 2 = 12 31 . 6 12 ) . 1 ( 10 ) . 1 ( 10 ) 4 . 155 7 . 162 ( z 2 2- = +-- = P-value = 1 1 )) 31 . 6 ( 1 ( 2245- =- Φ- . Since p-value is bigger than 0.05, we do not reject the null hypothesis. 5-3. a) 1) The parameter of interest is the difference in mean burning rate, μ μ 1 2- 2) H : μ μ 1 2- = or μ μ 1 2 = 3) H 1 : μ μ 1 2- ≠ or μ μ 1 2 ≠ 4) α = 0.05 5) The test statistic is z x x n n 1 2 1 2 1 2 2 2 =-- + ( ) ∆ σ σ 6) Reject H if z < - z α /2 = - 1.96 or z > z α /2 = 1.96 7) x 1 = 18.02 x 2 = 24.37 δ = 0 σ 1 = 3 σ 2 = 3 n 1 = 20 n 2 = 20- = +-- = 20 ) 3 ( 20 ) 3 ( ) 37 . 24 02 . 18 ( z 2 2 6.70 8) Since - 6.70 < - 1.96 reject the null hypothesis and conclude the mean burning rates do not differ significantly at α = 0.05....
View Full Document

## This note was uploaded on 12/11/2009 for the course CSE IEE taught by Professor Chattin during the Summer '09 term at ASU.

### Page1 / 45

Ch_5_4th_Ed - CHAPTER 5 Section 5-2 5-1 a The parameter of interest is the difference in fill volume μ μ 1 2 H μ μ 1 2 = or μ μ 1 2 = H 1 μ

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online