chapter 3 electrody

# chapter 3 electrody -...

This preview shows pages 1–19. Sign up to view the full content.

Boundary-Value Problems in Electrostatics II Reading:  Jackson 3.1 through 3.3,  3.5 through 3.10 Legendre Polynomials These functions appear in the solution of Laplace's eqn in cases with azimuthal symmetry. Consider a point charge  q  located at ( x y z ) = (0, 0,  a ). x y z a d r Potential   at point ( r,   ) 1 q

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
where is the  “generating   function”  for Legendre polynomials. then  g ( t x ) can be expanded in a binomial series. To derive the binomial expansion,  start with Maclaurin's Thm: , etc. 2
e.g.,  n  = 5: Binomial Thm: 3

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
We would like to express this as a power series in  t , with coeffs that depend on  : To this end, the following theorem is useful: Proof:   Start with 4
A few examples: 5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
=> Since this vanishes for all values of  t , each power of  t  must vanish separately    (recurrence relation) 6
This can be used to find higher order Legendre polynomials.   For example, given  P 0 ( x ) = 1 and  P 1 x ) =  x , we find (with  n  = 1) , as we found with the explicit formula. With repeated  application, we find: Note that  P n ( =1) = 1 7

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
8
9

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Differentiating recurrence relation wrt  : 10
= 11

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
(“Legendre's differential eqn”) Legendre polynomials satisfy Legendre's eqn   (hence the name). Legendre's eqn may also be written as: (interchanging  m  and  n ) Subtract eqns and integrate from  x  = -1 to 1: 12 0
=>  Legendre polynomials are orthogonal on interval [-1, 1]. What about  n  =  ? (cross terms vanish because of orthogonality) 13

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Legendre polynomials are also complete on [-1, 1]. Legendre series: with Next, we'll derive a useful alternative formula for computing Legendre polynomials, called  “Rodrigues' formula” : 14
(as derived earlier) (1) (2) (3) (1)  Differentiating  x 2 n -2 r   n  times yields (2)  The sum is extended from [ n /2] to  n .   In each of these terms the        exponent of  x  is <  n   =>   n  differentiations yields zero.  So, we're just        adding zero. 15

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Laplace eqn in  spherical coords: Separation of variables: If the region under consideration includes the full range of azimuth (0     < 2 ), then  Q ( ) must be periodic (with period 2 ). =>  const must be negative: with  m  an         integer Thus,  16
Eqn for  P ( ): (“generalized Legendre eqn”) 17

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
When  m  = 0 (as for cases with azimuthal symmetry, i.e., quantities do  not depend on the azimuthal angle  ), this reduces to the Legendre eqn. We know that Legendre polynomials satisfy Legendre's eqn for non-negative
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 12/12/2009 for the course PHYSICS DE 2009-2173 taught by Professor Dr.wrong during the Spring '09 term at École Normale Supérieure.

### Page1 / 62

chapter 3 electrody -...

This preview shows document pages 1 - 19. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online