chapter 3 electrody -...

Info iconThis preview shows pages 1–19. Sign up to view the full content.

View Full Document Right Arrow Icon
Boundary-Value Problems in Electrostatics II Reading:  Jackson 3.1 through 3.3,  3.5 through 3.10 Legendre Polynomials These functions appear in the solution of Laplace's eqn in cases with azimuthal symmetry. Consider a point charge  q  located at ( x y z ) = (0, 0,  a ). x y z a d r Potential   at point ( r,   ) 1 q
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
where is the  “generating   function”  for Legendre polynomials. then  g ( t x ) can be expanded in a binomial series. To derive the binomial expansion,  start with Maclaurin's Thm: , etc. 2
Background image of page 2
e.g.,  n  = 5: Binomial Thm: 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
We would like to express this as a power series in  t , with coeffs that depend on  : To this end, the following theorem is useful: Proof:   Start with 4
Background image of page 4
A few examples: 5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
=> Since this vanishes for all values of  t , each power of  t  must vanish separately    (recurrence relation) 6
Background image of page 6
This can be used to find higher order Legendre polynomials.   For example, given  P 0 ( x ) = 1 and  P 1 x ) =  x , we find (with  n  = 1) , as we found with the explicit formula. With repeated  application, we find: Note that  P n ( =1) = 1 7
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8
Background image of page 8
9
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Differentiating recurrence relation wrt  : 10
Background image of page 10
= 11
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
(“Legendre's differential eqn”) Legendre polynomials satisfy Legendre's eqn   (hence the name). Legendre's eqn may also be written as: (interchanging  m  and  n ) Subtract eqns and integrate from  x  = -1 to 1: 12 0
Background image of page 12
=>  Legendre polynomials are orthogonal on interval [-1, 1]. What about  n  =  ? (cross terms vanish because of orthogonality) 13
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Legendre polynomials are also complete on [-1, 1]. Legendre series: with Next, we'll derive a useful alternative formula for computing Legendre polynomials, called  “Rodrigues' formula” : 14
Background image of page 14
(as derived earlier) (1) (2) (3) (1)  Differentiating  x 2 n -2 r   n  times yields (2)  The sum is extended from [ n /2] to  n .   In each of these terms the        exponent of  x  is <  n   =>   n  differentiations yields zero.  So, we're just        adding zero. 15
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Laplace eqn in  spherical coords: Separation of variables: If the region under consideration includes the full range of azimuth (0     < 2 ), then  Q ( ) must be periodic (with period 2 ). =>  const must be negative: with  m  an         integer Thus,  16
Background image of page 16
Eqn for  P ( ): (“generalized Legendre eqn”) 17
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
When  m  = 0 (as for cases with azimuthal symmetry, i.e., quantities do  not depend on the azimuthal angle  ), this reduces to the Legendre eqn. We know that Legendre polynomials satisfy Legendre's eqn for non-negative
Background image of page 18
Image of page 19
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/12/2009 for the course PHYSICS DE 2009-2173 taught by Professor Dr.wrong during the Spring '09 term at École Normale Supérieure.

Page1 / 62

chapter 3 electrody -...

This preview shows document pages 1 - 19. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online