# Quiz 2 ANDREI - Quiz 2 Problem 1 Composite Simpson's Rule...

This preview shows pages 1–4. Sign up to view the full content.

Quiz 2 Luarsab Imnaishvili Problem 1 Composite Simpson's Rule f(x) = x^3 ln(x) a = 13.5 b = 14.5 Accuracy 0.000010 h < 0.212132 n > 4.714045 h = 0.125000 n = 8.000000 counter node value weight term 0 13.500000 6403.592635 1 6403.592635 1 13.625000 6606.434485 4 26425.737940 2 13.750000 6813.677099 2 13627.354199 3 13.875000 7025.372624 4 28101.490497 4 14.000000 7241.573312 2 14483.146625 5 14.125000 7462.331522 4 29849.326088 6 14.250000 7687.699716 2 15375.399432 7 14.375000 7917.730461 4 31670.921844 8 14.500000 8152.476426 1 8152.476426 Approximation: 7253.726904 Actual Value: 7253.73 Error: 0.00000058

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Problem 2 Simpson Multiple Integral n = 3 m = 3 f(x) = x/y b = 14.5 d(x) = 16.5x h=(b-a)/2n a = 13.5 c(x) = 15.5x 0.166667 grid x0 x1 x2 x3 x4 x5 x 13.500000 13.666667 13.833333 14.000000 14.166667 14.333333 c(x) 209.250000 211.833333 214.416667 217.000000 219.583333 222.166667 d(x) 222.750000 225.500000 228.250000 231.000000 233.750000 236.500000 k(x) = (d-c)/2m 2.250000 2.277778 2.305556 2.333333 2.361111 2.388889 y0 209.250000 211.833333 214.416667 217.000000 219.583333 222.166667 y1 211.500000 214.111111 216.722222 219.333333 221.944444 224.555556 y2 213.750000 216.388889 219.027778 221.666667 224.305556 226.944444 y3 216.000000 218.666667 221.333333 224.000000 226.666667 229.333333 y4 218.250000 220.944444 223.638889 226.333333 229.027778 231.722222 y5 220.500000 223.222222 225.944444 228.666667 231.388889 234.111111 y6 222.750000 225.500000 228.250000 231.000000 233.750000 236.500000 weights Function Values 1.000000 0.064516 0.064516 0.064516 0.064516 0.064516 0.064516 4.000000 0.063830 0.063830 0.063830 0.063830 0.063830 0.063830 2.000000 0.063158 0.063158 0.063158 0.063158 0.063158 0.063158 4.000000 0.062500 0.062500 0.062500 0.062500 0.062500 0.062500 2.000000 0.061856 0.061856 0.061856 0.061856 0.061856 0.061856 4.000000 0.061224 0.061224 0.061224 0.061224 0.061224 0.061224 1.000000 0.060606 0.060606 0.060606 0.060606 0.060606 0.060606 Terms = weights x values 0.064516 0.064516 0.064516 0.064516 0.064516 0.064516 0.255319 0.255319 0.255319 0.255319 0.255319 0.255319 0.126316 0.126316 0.126316 0.126316 0.126316 0.126316 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.123711 0.123711 0.123711 0.123711 0.123711 0.123711 0.244898 0.244898 0.244898 0.244898 0.244898 0.244898 0.060606 0.060606 0.060606 0.060606 0.060606 0.060606 k(x)/3 x column 0.844025 0.854445 0.864865 0.875285 0.885705 0.896125 weights 1.000000 4.000000 2.000000 4.000000

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern