Chapter 4 - CHAPTER 4 CARBON AND THE MOLECULAR DIVERSITY OF...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
CHAPTER 4 - CARBON AND THE MOLECULAR DIVERSITY OF LIFE A. The Importance of Carbon Although cells are 70-95% water, the rest consists mostly of carbon-based compounds. Proteins, DNA, carbohydrates, and other molecules that distinguish living matter from inorganic material are all composed of carbon atoms bonded to each other and to atoms of other elements. These other elements commonly include hydrogen (H), oxygen (O), nitrogen (N), sulfur (S), and phosphorus (P). 1. Organic chemistry is the study of carbon compounds The study of carbon compounds, organic chemistry , focuses on any compound with carbon (organic compounds). While the name, organic compounds, implies that these compounds can only come from biological processes, they can be synthesized by non-living reactions. Organic compounds can range from simple molecules, such as CO 2 or CH 4 , to complex molecules, like proteins, that may weigh over 100,000 daltons. The overall percentages of the major elements of life (C, H, O, N, S, and P) are quite uniform from one organism to another. However, because of carbon’s versatility, these few elements can be combined to build an inexhaustible variety of organic molecules. While the percentages of major elements do not differ within or among species, variations in organic molecules can distinguish even between individuals of a single species. The science of organic chemistry began in attempts to purify and improve the yield of products from other organisms. Later chemists learned to synthesize simple compounds in the laboratory, but they had no success with more complex compounds. The Swedish chemist Jons Jacob Berzelius was the first to make a distinction between organic compounds that seemed to arise only in living organisms and inorganic compounds from the nonliving world. This led early organic chemists to propose vitalism , the belief in a life outside the limits of physical and chemical laws. Support for vitalism began to wane as organic chemists learned to synthesize more complex organic compounds in the laboratory. In the early 1800s the German chemist Friedrich Wöhler and his students were able to synthesize urea from totally inorganic starting materials. In 1953, Stanley Miller at the University of Chicago was able to simulate chemical conditions on the primitive Earth to demonstrate the spontaneous synthesis of organic compounds. Organic chemists finally rejected vitalism and embraced
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 4

Chapter 4 - CHAPTER 4 CARBON AND THE MOLECULAR DIVERSITY OF...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online