This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Chapter 4 Paths in graphs 4.1 Distances Depthfirst search readily identifies all the vertices of a graph that can be reached from a designated starting point. It also finds explicit paths to these vertices, summarized in its search tree (Figure 4.1). However, these paths might not be the most economical ones possi ble. In the figure, vertex C is reachable from S by traversing just one edge, while the DFS tree shows a path of length 3 . This chapter is about algorithms for finding shortest paths in graphs. Path lengths allow us to talk quantitatively about the extent to which different vertices of a graph are separated from each other: The distance between two nodes is the length of the shortest path between them. To get a concrete feel for this notion, consider a physical realization of a graph that has a ball for each vertex and a piece of string for each edge. If you lift the ball for vertex s high enough, the other balls that get pulled up along with it are precisely the vertices reachable from s . And to find their distances from s , you need only measure how far below s they hang. Figure 4.1 (a) A simple graph and (b) its depthfirst search tree. (a) E A S B D C (b) S A B D E C 115 116 Algorithms Figure 4.2 A physical model of a graph. B E S D C A S D E C B A In Figure 4.2 for example, vertex B is at distance 2 from S , and there are two shortest paths to it. When S is held up, the strings along each of these paths become taut. On the other hand, edge ( D, E ) plays no role in any shortest path and therefore remains slack. 4.2 Breadthfirst search In Figure 4.2, the lifting of s partitions the graph into layers: s itself, the nodes at distance 1 from it, the nodes at distance 2 from it, and so on. A convenient way to compute distances from s to the other vertices is to proceed layer by layer. Once we have picked out the nodes at distance , 1 , 2 , . . . , d , the ones at d + 1 are easily determined: they are precisely the asyet unseen nodes that are adjacent to the layer at distance d . This suggests an iterative algorithm in which two layers are active at any given time: some layer d , which has been fully identified, and d + 1 , which is being discovered by scanning the neighbors of layer d . Breadthfirst search (BFS) directly implements this simple reasoning (Figure 4.3). Ini tially the queue Q consists only of s , the one node at distance . And for each subsequent distance d = 1 , 2 , 3 , . . . , there is a point in time at which Q contains all the nodes at distance d and nothing else. As these nodes are processed (ejected off the front of the queue), their asyetunseen neighbors are injected into the end of the queue. Lets try out this algorithm on our earlier example (Figure 4.1) to confirm that it does the right thing. If S is the starting point and the nodes are ordered alphabetically, they get visited in the sequence shown in Figure 4.4. The breadthfirst search tree, on the right, contains the edges through which each node is initially discovered. Unlike the DFS tree we saw earlier, itedges through which each node is initially discovered....
View
Full
Document
This note was uploaded on 12/15/2009 for the course CS 473 taught by Professor Viswanathan during the Spring '08 term at University of Illinois at Urbana–Champaign.
 Spring '08
 Viswanathan

Click to edit the document details