# toc - Algorithms Copyright c 2006 S Dasgupta C H...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Algorithms Copyright c 2006 S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani July 18, 2006 2 Algorithms Contents Preface 9 Prologue 11 0.1 Books and algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 0.2 Enter Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 0.3 Big- O notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1 Algorithms with numbers 21 1.1 Basic arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2 Modular arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3 Primality testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.5 Universal hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Randomized algorithms: a virtual chapter 39 2 Divide-and-conquer algorithms 55 2.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2 Recurrence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3 Mergesort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4 Medians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.5 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.6 The fast Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3 Decompositions of graphs 91 3.1 Why graphs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2 Depth-first search in undirected graphs . . . . . . . . . . . . . . . . . . . . . . . . 93 3.3 Depth-first search in directed graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.4 Strongly connected components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3 4 Algorithms 4 Paths in graphs 115 4.1 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2 Breadth-first search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3 Lengths on edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118....
View Full Document

{[ snackBarMessage ]}

### Page1 / 8

toc - Algorithms Copyright c 2006 S Dasgupta C H...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online