{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# hw4(1) - CS 373 Combinatorial Algorithms Fall 2000 Homework...

This preview shows pages 1–2. Sign up to view the full content.

CS 373: Combinatorial Algorithms, Fall 2000 Homework 4 (due October 26, 2000 at midnight) Name: Net ID: Alias: U 3 / 4 1 Name: Net ID: Alias: U 3 / 4 1 Name: Net ID: Alias: U 3 / 4 1 Homeworks may be done in teams of up to three people. Each team turns in just one solution, and every memeber of a team gets the same grad. Since 1-unit graduate students are required to solve problems that are worth extra credit for other students, 1-unit grad students may not be on the same team as 3/4-unit grad students or undergraduates. Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above. Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student by circling U, 3 / 4 , or 1, respectively. Staple this sheet to the top of your homework. RequiredProblems 1. (10 points) A certain algorithms professor once claimed that the height of an n -node Fibonacci heap is of height O (log n ) . Disprove his claim by showing that for a positive integer n , a sequence of Fibonacci heap operations that creates a Fibonacci heap consisting of just one tree that is a (downward) linear chain of n nodes. 2. (20 points) Fibonacci strings are defined as follows: F 1 = b F 2 = a F n = F n - 1 F n - 2 for all n > 2 where the recursive rule uses concatenation of strings, so F 3 = ab , F 4 =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern