hw4(2) - CS 373: Combinatorial Algorithms, Spring 2001

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CS 373: Combinatorial Algorithms, Spring 2001 http://www-courses.cs.uiuc.edu/~cs373 Homework 4 (due Thu. March 29, 2001 at 11:59:59 pm) Name: Net ID: Alias: U 3 / 4 1 Name: Net ID: Alias: U 3 / 4 1 Name: Net ID: Alias: U 3 / 4 1 Homeworks may be done in teams of up to three people. Each team turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate students are required to solve problems that are worth extra credit for other students, 1-unit grad students may not be on the same team as 3/4-unit grad students or undergraduates. Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above. Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student by circling U, 3 / 4 , or 1, respectively. Staple this sheet to the top of your homework. Required Problems 1. Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively subdivides the rectangle as follows. First we split the box into two smaller boxes with a vertical line, then we split each of those boxes with horizontal lines, and so on, always alternating between horizontal and vertical splits. Each time we split a box, the splitting line partitions the rest of the interior points as evenly as possible by passing through a median point inside the box ( not on the boundary). If a box doesnt contain any points, we dont split it any more; these final empty boxes are called cells . = = = Successive divisions of a kd-tree for 15 points. The dashed line crosses four cells. CS 373 Homework 4 (due 3/29/01) Spring 2001 An example staircase as in problem 3. (a) How many cells are there, as a function of n ? Prove your answer is correct....
View Full Document

Page1 / 5

hw4(2) - CS 373: Combinatorial Algorithms, Spring 2001

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online