8 Q - AP® Calculus AB 2006 Free-Response Questions The...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: AP® Calculus AB 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 5,000 schools, colleges, universities, and other educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns. © 2006 The College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service, CollegeEd, connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and Setting the Cornerstones are trademarks owned by the College Board. PSAT/NMSQT is a registered trademark of the College Board and National Merit Scholarship Corporation. All other products and services may be trademarks of their respective owners. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.com/inquiry/cbpermit.html. Visit the College Board on the Web: www.collegeboard.com. AP Central is the official online home for the AP Program: apcentral.collegeboard.com. 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS CALCULUS AB SECTION II, Part A Time— 45 minutes Number of problems— 3 A graphing calculator is required for some problems or parts of problems. 1. Let R be the shaded region bounded by the graph of y = ln x and the line y = x - 2, as shown above. (a) Find the area of R. (b) Find the volume of the solid generated when R is rotated about the horizontal line y = -3. (c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about the y-axis. WRITE ALL WORK IN THE PINK EXAM BOOKLET. © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). GO ON TO THE NEXT PAGE. 2 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 2. At an intersection in Thomasville, Oregon, cars turn left at the rate L(t ) = 60 t sin 2 time interval 0 £ t £ 18 hours. The graph of y = L(t ) is shown above. ( 3t ) cars per hour over the (a) To the nearest whole number, find the total number of cars turning left at the intersection over the time interval 0 £ t £ 18 hours. (b) Traffic engineers will consider turn restrictions when L(t ) ≥ 150 cars per hour. Find all values of t for which L(t ) ≥ 150 and compute the average value of L over this time interval. Indicate units of measure. (c) Traffic engineers will install a signal if there is any two-hour time interval during which the product of the total number of cars turning left and the total number of oncoming cars traveling straight through the intersection is greater than 200,000. In every two-hour time interval, 500 oncoming cars travel straight through the intersection. Does this intersection require a traffic signal? Explain the reasoning that leads to your conclusion. WRITE ALL WORK IN THE PINK EXAM BOOKLET. © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). GO ON TO THE NEXT PAGE. 3 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 3. The graph of the function f shown above consists of six line segments. Let g be the function given by g ( x ) = x Ú0 f (t ) dt. (a) Find g (4 ) , g ¢(4 ) , and g ¢(4 ) . (b) Does g have a relative minimum, a relative maximum, or neither at x = 1 ? Justify your answer. (c) Suppose that f is defined for all real numbers x and is periodic with a period of length 5. The graph above shows two periods of f. Given that g (5) = 2, find g (10 ) and write an equation for the line tangent to the graph of g at x = 108. WRITE ALL WORK IN THE PINK EXAM BOOKLET. END OF PART A OF SECTION II © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 4 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS CALCULUS AB SECTION II, Part B Time— 45 minutes Number of problems— 3 No calculator is allowed for these problems. t (seconds) 0 10 20 30 40 50 60 70 80 v(t ) (feet per second) 5 14 22 29 35 40 44 47 49 4. Rocket A has positive velocity v(t ) after being launched upward from an initial height of 0 feet at time t = 0 seconds. The velocity of the rocket is recorded for selected values of t over the interval 0 £ t £ 80 seconds, as shown in the table above. (a) Find the average acceleration of rocket A over the time interval 0 £ t £ 80 seconds. Indicate units of measure. (b) Using correct units, explain the meaning of 70 Ú10 v(t ) dt in terms of the rocket’s flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate 70 Ú10 v(t ) dt. 3 feet per second per second. At time t +1 t = 0 seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time t = 80 seconds? Explain your answer. (c) Rocket B is launched upward with an acceleration of a(t ) = WRITE ALL WORK IN THE PINK EXAM BOOKLET. © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). GO ON TO THE NEXT PAGE. 5 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 5. Consider the differential equation dy 1 + y = , where x π 0. dx x (a) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated. (Note: Use the axes provided in the pink exam booklet.) (b) Find the particular solution y = f ( x ) to the differential equation with the initial condition f ( -1) = 1 and state its domain. 6. The twice-differentiable function f is defined for all real numbers and satisfies the following conditions: f (0 ) = 2, f ¢(0 ) = - 4, and f ¢¢(0 ) = 3. (a) The function g is given by g ( x ) = e ax + f ( x ) for all real numbers, where a is a constant. Find g ¢(0 ) and g ¢¢(0 ) in terms of a. Show the work that leads to your answers. (b) The function h is given by h( x ) = cos (kx ) f ( x ) for all real numbers, where k is a constant. Find h ¢( x ) and write an equation for the line tangent to the graph of h at x = 0. WRITE ALL WORK IN THE PINK EXAM BOOKLET. END OF EXAM © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 6 ...
View Full Document

This note was uploaded on 12/15/2009 for the course SOCIAL STU 129348437 taught by Professor Phalange during the Spring '09 term at Aberystwyth University.

Ask a homework question - tutors are online