D-03 - current that opposes ia, known as the back...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Ea(s)    s(s+a m ) We will now proceed by deriving an expression for Km and a Let us consider schematic for an armature-controlled DC motor as shown below: Figure 1 : The Schematic for an armature-controlled DC motor The magnetic field imposes a total force on the armature circuit of F = 2Blia where B is the magnetic field strength, 2l is the total length of the  conductor that is perpendicular to the field, and ia is the current. Multiplying by  the rotor's radius r we obtain a torque, Tm = rF = r2Blia = Kt ia . ..................................................... 6 Where Kt = 2BLr is the motor torque constant. So, the current ia generates a torque. However, any conductor travelling through  a magnetic field will induce a voltage on the conductor. This voltage induces a 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: current that opposes ia, known as the back electromotive force (emf) which is proportional to the motor speed. vb(t) = Kb d m(t) . 7 dt Where the constant Kb = Kt in a consistent set of units. In the frequency domain these two fundamental effects are expressed as follows: Tm(s) = Kt Ia(s) . . 8 Vb(s) = Kb s m(s) . . 9 Applying KVL we obtain,...
View Full Document

This note was uploaded on 12/20/2009 for the course ECE 451 taught by Professor Staff during the Fall '09 term at Clarkson University .

Page1 / 2

D-03 - current that opposes ia, known as the back...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online