D-09 - s (s+100) (s+1.32) 0.00063025 (z+1.339) (z+0.01679)...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
transfer function; we refer to this transfer function as Gp(s) in our analysis for the  overall closed-loop transfer function of the system. Therefore Gp(s) =    100x0.8x0.2                           s(s+100)(s+1.32) The expression for the closed-loop transfer function is given as: i(z) = Vi(z)K θ pot   Ve(z) =  θ i(z)K pot  –  θ 0 (z)K pot   θ 0 (z) = KK pot   θ i (z) G zas (z) - KK pot   θ 0 (z) G zas (z)          θ 0 (z)  =   KK pot  G zas (z) θ i (z)     1+KK pot  G zas (z)  Where G zas (z) = (1-Z -1 Z (Gp(s)/s), K=1, K pot  = 3.183, T=0.1sec Therefore:                     16    Gp(s) = ------------------
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: s (s+100) (s+1.32) 0.00063025 (z+1.339) (z+0.01679) G zas (z) = -------------------------------- (z-1) (z-0.8763) (z-4.54e-005) (z) = 0.0020061 (z+1.339) (z+0.01679) i (z) -------------------------------------- (z+6.042e-006) (z^2 - 1.874z + 0.8792) Figure 8: The response of the system to a unit step input The stable range of gain K which is equivalent to...
View Full Document

Page1 / 2

D-09 - s (s+100) (s+1.32) 0.00063025 (z+1.339) (z+0.01679)...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online