# D-09 - s(s 100(s 1.32 0.00063025(z 1.339(z 0.01679 G zas(z...

This preview shows pages 1–2. Sign up to view the full content.

transfer function; we refer to this transfer function as Gp(s) in our analysis for the  overall closed-loop transfer function of the system. Therefore Gp(s) =    100x0.8x0.2                           s(s+100)(s+1.32) The expression for the closed-loop transfer function is given as: i(z) = Vi(z)K θ pot   Ve(z) =  θ i(z)K pot  –  θ 0 (z)K pot   θ 0 (z) = KK pot   θ i (z) G zas (z) - KK pot   θ 0 (z) G zas (z)          θ 0 (z)  =   KK pot  G zas (z) θ i (z)     1+KK pot  G zas (z)  Where G zas (z) = (1-Z -1 Z (Gp(s)/s), K=1, K pot  = 3.183, T=0.1sec Therefore:                     16    Gp(s) = ------------------

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: s (s+100) (s+1.32) 0.00063025 (z+1.339) (z+0.01679) G zas (z) = -------------------------------- (z-1) (z-0.8763) (z-4.54e-005) θ (z) = 0.0020061 (z+1.339) (z+0.01679) θ i (z) -------------------------------------- (z+6.042e-006) (z^2 - 1.874z + 0.8792) Figure 8: The response of the system to a unit step input The stable range of gain K which is equivalent to...
View Full Document

## This note was uploaded on 12/20/2009 for the course ECE 451 taught by Professor Staff during the Fall '09 term at Clarkson University .

### Page1 / 2

D-09 - s(s 100(s 1.32 0.00063025(z 1.339(z 0.01679 G zas(z...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online