int cal8 - pokharel (yp624) HW08 Radin (57410) 1 This...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: pokharel (yp624) HW08 Radin (57410) 1 This print-out should have 23 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay / 2 sin 2 x cos 3 x dx . 1. I = 4 15 2. I = 1 15 3. I = 8 15 4. I = 2 15 correct 5. I = 2 5 Explanation: Since sin 2 x cos 3 x = (sin 2 x cos 2 x ) cos x = sin 2 x (1- sin 2 x )cos x = (sin 2 x- sin 4 x )cos x , the integrand is of the form cos xf (sin x ), sug- gesting use of the substitution u = sin x . For then du = cos x dx , while x = 0 = u = 0 x = 2 = u = 1 . In this case I = integraldisplay 1 ( u 2- u 4 ) du . Consequently, I = bracketleftBig 1 3 u 3- 1 5 u 5 bracketrightBig 1 = 2 15 . keywords: Stewart5e, indefinite integral, powers of sin, powers of cos, trig substitu- tion, 002 10.0 points Evaluate the definite integral I = integraldisplay / 4 3 cos x- 2 sin x cos 3 x dx . 1. I = 3 2 2. I = 2 correct 3. I = 5 2 4. I = 1 2 5. I = 1 Explanation: After division 3 cos x- 2 sin x cos 3 x = 3 sec 2 x- 2 tan x sec 2 x = (3- 2 tan x ) sec 2 x . Thus I = integraldisplay / 4 (3- 2 tan x ) sec 2 x dx . Let u = tan x ; then du = sec 2 x dx so I = integraldisplay 1 (3- 2 u ) du = bracketleftbig 3 u- u 2 bracketrightbig 1 . pokharel (yp624) HW08 Radin (57410) 2 Consequently, I = 2 . 003 10.0 points Find the value of I = integraldisplay 4 tan 4 x dx . 1. I = 4- 2 3 correct 2. I = 3 3. I = 6- 8 3 9 4. I = 6 + 8 3 9 5. I = 3 3 6. I = 4 + 2 3 Explanation: Since tan 2 x = sec 2 x- 1 , we see that tan 4 x = tan 2 x ( sec 2 x- 1 ) = tan 2 x sec 2 x- tan 2 x . Thus by trig identities yet again, tan 4 x = ( tan 2 x- 1 ) sec 2 x + 1 . In this case, I = integraldisplay 4 bracketleftbig( tan 2 x- 1 ) sec 2 x + 1 bracketrightbig dx = bracketleftbigg 1 3 tan 3 x- tan x + x bracketrightbigg 4 . On the other hand, tan 4 = 1 . Consequently, I = 4- 2 3 . 004 10.0 points Evaluate the definite integral I = integraldisplay x (5 cos 2 x- sin 2 x ) dx 1. I = 5 2 2 2. I = 3 2 2 3. I = 2 correct 4. I = 2 + 1 5. I = 3 2 2 + 3 2 Explanation: Since cos 2 x = 1 2 (1 + cos 2 x ) and sin 2 x = 1 2 (1- cos 2 x ) , we see that I = 1 2 integraldisplay x { 5 (1 + cos 2 x )- 1 + cos 2 x } dx = 2 integraldisplay x dx + 3 integraldisplay x cos 2 x dx = bracketleftBig x 2 bracketrightBig + 3 integraldisplay x cos 2 x dx = 2 + 3 integraldisplay x cos 2 x dx . pokharel (yp624) HW08 Radin (57410) 3 But after integration by parts, integraldisplay x cos 2 x dx = 1 2 bracketleftBig x sin 2 x bracketrightBig - 1 2 integraldisplay sin 2 x dx = 0 + 1 4 bracketleftBig cos 2 x bracketrightBig = 0 ....
View Full Document

Page1 / 13

int cal8 - pokharel (yp624) HW08 Radin (57410) 1 This...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online