This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 12 . 26 . 4312 . 899 . 2. Consider the space, X , of all piecewise continuous functions on the interval [, ] (having at most nitely many discontinuities) with the inner product dened as < f,g > = 1 Z  f ( t ) g ( t ) dt. Compute  1  ,  sin( t )  ,  cos( t )  ,  sin(2 t )  , and  cos(2 t )  . Let T 2 be the set of all functions of the form f ( t ) = a + b 1 sin( t )+ c 1 cos( t )+ b 2 sin (2 t )+ c 2 cos (2 t ). Show T 2 is a subspace of the space X . Find an orthonormal basis for T 2 . (Check it) Compute Proj T 2 ( f ( t )) where f ( t ) = , t < 1 , t ....
View
Full
Document
This note was uploaded on 12/25/2009 for the course MATH 1920 taught by Professor Pantano during the Spring '06 term at Cornell University (Engineering School).
 Spring '06
 PANTANO
 Multivariable Calculus, Least Squares

Click to edit the document details