Lec09 - Math 1920 Lecture addendum Given a multivariable...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Math 1920 - Feb 11, 2009 Lecture addendum Given a multivariable function f ( x ( r,θ ) ,y ( r,θ )). In the example of polar coordinates, x ( r,θ ) = r cos θ and y ( r,θ ) = r sin θ . 1. Use the chain rule to find ∂f ∂r . ∂f ∂r = ∂f ∂x ∂x ∂r + ∂f ∂y ∂y ∂r = f x ∂x ∂r + f y ∂y ∂r 2. Use the chain rule to find ∂f ∂θ . ∂f ∂θ = ∂f ∂x ∂x ∂θ + ∂f ∂y ∂y ∂θ = f x ∂x ∂θ + f y ∂y ∂θ 3. Use the chain rule to find 2 f ∂r 2 . (hint: use part 1) 2 f ∂r 2 = ∂r ± ∂f ∂r ² = ∂r ± ∂f ∂x ∂x ∂r + ∂f ∂y ∂y ∂r ² = ∂r ± ∂f ∂x ² ∂x ∂r + ∂f ∂x ∂r ± ∂x ∂r ² + ∂r ± ∂f ∂y ² ∂y ∂r + ∂f ∂y ∂r ± ∂y ∂r ² = ³ ∂x ± ∂f ∂x ² ∂x ∂r + ∂y ± ∂f ∂x ² ∂y ∂r ´ ∂x ∂r + 2 x ∂r 2 ∂f ∂x + ³ ∂x ± ∂f ∂y ² ∂x ∂r + ∂y ± ∂f ∂y ² ∂y ∂r ´ ∂y ∂r + 2 y ∂r 2 ∂f ∂y = 2 f ∂x 2 ³ ∂x ∂r ´ 2 + 2 f ∂y∂x ∂y ∂r ∂x ∂r + 2 x ∂r 2 ∂f ∂x + 2 f ∂x∂y ∂x ∂r ∂y ∂r + 2 f ∂y 2 ³ ∂y ∂r ´ 2 + 2 y ∂r 2 ∂f ∂y = 2 f ∂x 2 ³ ∂x ∂r ´ 2 + 2 f ∂y 2 ³ ∂y ∂r ´ 2 + 2 2 f ∂y∂x ∂y ∂r ∂x ∂r + 2 x ∂r 2 ∂f ∂x + 2 y ∂r 2 ∂f ∂y 4. Use the chain rule to find 2 f ∂θ 2 . (hint: use part 2) 2 f ∂θ 2 = ∂θ ± ∂f ∂θ ² = ∂θ ±
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 12/25/2009 for the course MATH 1920 taught by Professor Pantano during the Spring '06 term at Cornell.

Ask a homework question - tutors are online