{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

print5

# print5 - Transformations of Continuous Random Variables I...

This preview shows pages 1–2. Sign up to view the full content.

Transformations of Continuous Random Variables I. Univariate case. If is a continuous random variable with pdf and is a continuous, invertible \ 0 1 function, then the pdf for is given by ] œ 1Ð\Ñ 0 ÐCÑ œ l l 0Ð1 ÐCÑÑÞ ] .B .C " Example 1 . Let have pdf given by Find the pdf for \ 0 0ÐBÑ œ #/ M ÐBÑÞ ] œ #B Ò!ß_Ñ È Since , and , we obtain 1 Ð] Ñ œ \ œ ] œ #C 0Ð1 ÐCÑÑ œ #/ " " #C # .B .C # 0 ÐCÑ œ #C † #/ M ÐC Ñ ] #C # Ò!ß_Ñ # œ %C/ M ÐCÑÞ #C Ò!ß_Ñ # Example 2. Let have pdf given by 1 Find the pdf for \ 0 0ÐBÑ œ M ÐBÑÞ ] œ \ Þ Ò!ß \$ 1] Since , we have and 1 1 Ð] Ñ œ \ œ ] œ C 0Ð1 ÐCÑÑ œ M ÐC Ñ œ M ÐCÑÞ " #Î\$ " "Î\$ "Î\$ .B .C \$ Ò!ß Ò!ß"Ó 1 1] Thus 0 ÐCÑ œ C M ÐCÑÞ ] \$ #Î\$ Ò!ß"Ó 1 Example 3. Let have pdf given by z ^ 0 0Ð Ñ œ Ð# Ñ / M ÐDÑÞ 1 "Î# D Î# Ò_ß_Ó # Find the pdf for ] œ 1Ð] Ñ œ ^ Þ # First note that is not invertible over the support of . We need to partition the support into 1 ^ the set of negative reals and the set nonnegative reals and write z

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}