08win-m2sols

# 08win-m2sols - Math 51— Winter 2008 — Midterm Exam II...

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 51— Winter 2008 — Midterm Exam II Please circle the name of your TA: Zachary Cohn José Perea Nikola PeneV Man Chun Li Daniel Mathews Theodora Bourni Anssi Lahtinen Isidora Milin Circle the time your TTh section meets: 10:00 11:00 1:15 2:15 Your name (print): 6 OLUT "ON £3 E Student ID: Sign to indicate that you accept the honor code: Instructions: Circle your TA’S name and the time that you attend the TTh section. Read each question carefully, and show all your work. You have 90 minutes to do all the problems. During the test, you may NOT use any notes, books, or calculators. 6 Total Question 1 2 3 4 5 | Maximum 20 E 16 12 22 . 16 E 14 100 Score Problem 1. (20 points total) Consider the matrix A : (3)2 32) (a)(10 points) ﬁnd the eigenvalues and the corresponding eigenvectors of A. cm Q1 \ "Ev-“A 2. \50 .. Z a, Z,“ {5 JAM-”2%) + ‘I t O “*2. '1 b . {I 1 < Ci 1 W Z ab 5" 2. Qw&gawb%% (A\ 3:. 2:7 ,I/ 1 2“}; a ”\1 1 E a: 5 f f: G: L Z EC) 2; if: \»z w /\b/ M f ,,,,,,,,,,,,,,,,,,,,,,, ; 111111 g t; ...... W: wwwwwwwww l v; « < ) L1 2 1° 1 WWW“ (b) (3pts) What are the eigenvalues of A99? (A is the matrix given above) \Si 7\ {’3 0‘“ kw vK B 9;»th Av '23? v gt»; Sorm V750 WW“ Riv a Amt") :Mvwiav mg, (C) (3pts) is A99 diagonalizable? ﬁmnﬁk A {’3 ("Eula ‘f‘mﬁkmw (Lick. 392‘?“ij E’WQWZQ ) View“ if“ ac ksﬁswjtmkﬁe ( «imam AW am (we, (ax-twat W) /,1\ /A,,L,,\ :r n 5.; , rings“ :_- 11132 if r___r._ A ___‘L_AJ_ :N, 1. pour Ar :Lﬂ, :_MAMA "MAMA L‘IA,‘ 1:.AA_A« KG) Vipbb) 11 IL lb CL 1681011 111 RR UL area Li, Wildm 1b bile area U1 lbb 1111:1336 Lulutil bub 111 Cal transformation With associated matrix A? luméix (3‘ imam ﬂax/w» Tﬂa) "2 ~ )C ) Codeq gccgjlgﬂ L) imn’i‘ 01mm L T (RY) A H E: 2 § 2“ 73 so (maﬁa Z\; -2, 3a " Z, ‘2, MGR kT(R)> 2: \”Z\mu1‘; 2,“L/ : 8 Problem 2. (16 pts total) Consider the linear transformation T that reﬂects vectors in R2 across the line y = 2x. (a )(8 pts) ﬁnd the matrix A corresponding to this linear transformation. (we Nuxﬂta 30% vtxomi \ \/17'////é” m V (iyhm meta ,‘ (b)(8 pts) What are the eigenvalues andieigenvgctors of A? mm “W 11 = T (All) 17. b \l U Problem 3. (12 points) Evaluate the following limit, or explain Why the limit fails to exist. \UQ q/waJk O CLQD\<XQJM :WX\ X10; 1 ‘ “Q’s-m A—~ _, X W11?” 2, 1—99 X‘ 4L r X~>o ‘I ‘r L :2, (12 $3 'r’mx ‘3 X 4% x i 1 4 m." w M‘ Problem 4. (22 points total) Assume you are standing at a point P of coordinates :1: é 20, y = 10 on a hillside Whose height (in feet above sea level) is given by j H ha, y) = 500 — x2 + 2303/ + 3y2, Where at points E (east), and 3; points N (north). ‘1 “ (a) (6pts) suppose you start moving in the SW direction, do you ascent or descend? V l i WQ (ME/€301 wuz 3‘03M \3\ We (yanked OL,MI¢&4§~Q‘ cal PC“ ckkukﬁ‘nuﬁ E vs i i i E § § «.23 ~1 ) . V =( ) 3.3 M vu‘h {1 .2, V 3 _L - l '1 nw v2 ~[ .— K7537” Xx) : (Qatari) > V -2320 +240 ~20 2x +6 262 ,. :5 0 arm we, ,3, 63\ M ’7 ,”’_ «'20 ‘6: M ' 93R,\J§u_< )<. 520 too4,QM\WCﬂMmM4 l 0 K7 ‘7'; \fl (b) (8pts) ﬁnd the equation of the tangent plane to the graph of h(:1:7 y) at the point P. «62’ Olgkmmsieml‘ We.» (3 l) g, 2“ ' {“3”} ”KX‘W'M‘U‘Z’Q) + ﬁat wjmxﬁaa) {1§)\%)'zgﬁam'ﬁgamt‘lgéf'Sangm a “all if“ ‘ £3 Q: L“) g1 QSBC "gush (Q) S 12? leLeWQA ‘ ’ 2 «8620 : est-wag) 1‘» (m; (c) (8pts) use the result in (b) to approximate the change in height you experience if you move from P to the point of coordinates x = 217 y 2 9. MGMZ knx Gag/wax Cu, Rb) A“ % v’ZOL'UW‘LQ‘)+imkﬁi-io) raw/001423 Problem 5. (16 pts total) Consider A and B two 4 X 4 matrices with det A = 3 and det B = 2. Furthermore, denote by T : R4 —> 4 the linear transformation T(:c) : A50 for all a: E R4. (at) (3 pts) ﬁnd det(AB) MLH‘E) ; M Raw TA : 3am; (b) (3 pts) ﬁnd det A—1 4$1”; 1-,, .L we) Cram 3 (C) (3 pts) ﬁnd det(2A) 6CMCE g L9 9 at £1 ) \X/KKSE «A W ‘7 [W‘LRE @kC/l Seq‘ﬁg ”I éujj Qﬁ €CiC/I: {am \KIE . A; i . C ﬁr Mgr): Swain 222’s (e) (3pts) is the linear transformation T deﬁned above invertible? sorrel ah; a 4:3 ﬁrst“; or; Jam. r ”r". .Rwrugg - a W 9 ~' VJ \- “Va: ”ﬂew )n e (/3 a]: w; . r a, w . _- .., ‘ , (d) (4pts) can we ﬁnd a basis 8 of R4 in which T has matrix B? Problem 6. (14 points) Assume X(t) is the position vector at time t of an ant moving smoothly on a sphere of radius 5 centered at the origin. Prove that, at any moment, the velocity vector dX . . . . . ~— Of the ant IS perpendlcular to its p081t10n vector. wdt 7, *7, i ’Q 3KS'Qsz, “ X 4} 4721:25 i CRUZ muhﬁ )uQu‘i {unlit/WV ‘_ E E E E E E Mt)?" + Skid/1+ 1402:25— ~ a: A “bk “:3 (It “13% 1N) (3.: +2 Swing?) wags}: Wildcat (L. 1% §Q «2 {3:1 (17??) “ t)” 3 3 At 0 €53” 32?“) CL Cg; MW. hm mmmmm wwwmmmMW mmwwét g ‘9 WM {\WW kgékzt 3&1: \k 9 £5me ”3 lﬁg‘“ QKW'E erxgﬂam 05% F(%)J:))3C :1 X’K‘£S1,¢%L Gukclwla ,« ‘\’ M ~> \ a\ gig“ L: M“??? "r X2¢3f£J~G ”Reameﬂ; QﬁMsQ? ERAMCXJ Uﬁgagé E) 3 I f n m i ‘13 at Elm“: “in“ ukgﬁm K“ S " M JW Nimm <7 F V) @UJZ. (Lac-ago? lAemT €1,ng L M 3% (ﬁlm-‘8‘“ Mb (3%“ Qﬁ‘x ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern