{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Section8_8_review

Section8_8_review - Section 8.8 Improper Integrals An...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 8.8: Improper Integrals An improper integral is a definite integral in which the integrand f x ( 29 has a discontinuity on the interval a , b [ ] or one in which the interval involve ± ∞ . Improper Integrals of Type I: (i) If f x ( 29 is continuous on a , ∞ [ 29 (in other words, the interval extends to ∞ ), then f x ( 29 dx a ∞ ∫ = lim t →∞ f x ( 29 dx a t ∫ (ii) If f x ( 29 is continuous on -∞ , b ( ] (in other words, the interval extends from -∞ ), then f x ( 29 dx-∞ b ∫ = lim t →-∞ f x ( 29 dx t b ∫ (iii) If f x ( 29 is continuous on -∞ , ∞ ( 29 (in other words, the interval extends from -∞ and to ∞ ), then f x ( 29 dx-∞ ∞ ∫ = f x ( 29 dx-∞ c ∫ + f x ( 29 dx c ∞ ∫ = lim t →-∞ f x ( 29 dx t c ∫ + lim t →∞ f x ( 29 dx c t ∫ where c is any real number. In each case, if the limit is finite then the improper integral converges and the limit is the value of the improper integral. If the limit fails to exist, the improper integral diverges....
View Full Document

{[ snackBarMessage ]}

Page1 / 5

Section8_8_review - Section 8.8 Improper Integrals An...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online