{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lecture 9 - Continuous random variables Example Height...

Info icon This preview shows pages 1–13. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 12
Image of page 13
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Continuous random variables Example: Height measurement- how exact can you get? interval size=5 inlerVal size=1 a: O O to O o E Q 2‘ v 5' a g a B 3 Q N D N c j g 8 E O 1"'—“"'_""T_‘_"—“'—T'"_—"_—"l ‘3 I—r—r——-—r—-—r-'—-r———i—-—'i 50 50 70 so so 55 so 65 TD 75 so 35 height height I! O D _. 8 8 ,, o ‘3 r: g .2: 5 ., m '0 E E" 3 3 a E) E N O D 8 8 D O . ‘ so 55 so 55 7a 75 so as 50 55 so 55 7o 75 so 35 height neigm More examples: weight, waiting time till an event, Probability E Area under a curve Probability of measurement being in interval (a, b) = area under curve from a to b. P(60 < height < 70) 2 area of shaded region 006 uensuy 0.04 0.02 0.00 f“ I: a Ox QQn +00 be -) ( b r cl? {-m )dx 0\ a]: (I : Hm iguanhanxk ma! AXK‘)‘ ‘ ( Ru'emmn Sum ) 00 = j ghdftx) ab: BOCcuASQ PanevHoS 0f MPQcTu?|'ofi Sud. as — addfiiuf‘ly .— ‘;GQO(;'.'7 of! , \noN for 4(5me WV. 5 , fine Pnrpe'rhIS mmsf (mh‘nme {b hdd “for Cm‘h‘nuoms (Al-S. Shnflour‘, folr Pwpkri'h'iof- VONCX.) ON) 3000 Sa‘nq 13959 are defined “mask Qxyed‘ad‘l‘o‘a . Ye’r anonr way 1!» Manama fie (dnLQP‘r 0“ k den$l:bf ’ QPPI\’L0\‘J'Q +5 muifi-d;men3§ono~l V‘. V. X For any 3mm” (onaedgg neigborkomi A P( x e A) E {(xo).(s;3¢ of A) wkue an, (5 any P05“ in A . LA 5.“ 013m . 1: +113] In 2—0UM +05.) 3‘9. 51(X‘IX‘) is A r. dedor Formally : Property of 0- dQflSI?" {KflCfg‘afl /- {'(X’ 20 far all I 6 (-00) as) P(& E. X S L) :: J: ft1)c[x Define Flat) = P(x 5 x) f3 be He (CDF) 5x3. We say X N Qfipontnfiax‘ ()5) [-M. X has Cm exponenHal 0‘;S+r:bv~fioa wfl’fi gaomma‘tor ) ] The QXPOQOni'iOL‘ 1““.- Ca (‘13:! No 3&5 h‘meg P(X>x3={€- I )3: - ‘F x20 3(- x<o :f x 3-0 1" 1‘0 IF )(>o the [S a good moale,| for I Q‘fi“ ‘h‘me {Tam one ru&.ag‘h’~ae decay fluent? +1) “"8 nPXf. (032 i : Y 3 g (X) (a. F) I‘S \‘n meaSu‘tj To 1*” fylg) , 7 Swan“ 1—C\kQ O. Sing” "JN‘H’J (3-1 ) ‘31.) Ground ~1_ FPM‘ we Lawre$Ponol.'/L5 LYI)XL) aromol X. 0-9. solue §(x)=‘3 far or %(1\)=’3‘ hf I. P( ‘(6 (an, 31))=P(xe (an); ‘6‘](3) ($173.); fXCX)-Q&-xl) -f follows KW? _' _l Ll). Ty”) = fx(3(‘a3)§%§(u) 2). 15m: [hm-Jr] -. FC‘) {5 °~ 31";6‘47 \‘ncreasCAg ”M. (an Fm: Nye a) ) wfi-k mam-um {0). Q1 H003 Cow we genorgL (Sample) a UOt‘N for Y fiu‘uen fink we “MI“! 0 UW'H'OIM (‘mndmn num‘Hr‘ fienetadov'? Sch-dim I The \JmC-(n randm num. generd» fienewd‘bs X «2 Wm'f [0, I] . 11’— we Sefi' Y: F“(x) \o senerw’re Y 'V F(" fien 33‘ Y: F4”) 6%. 50hr? F‘Y) : X I“ e"? :2 3C #0:? " -)\3 :: fin (l'x) ‘3 t: -"!>": can (PX) Le. Y=-'%:£"("X) bun“ have (A ex? ()3 d131- Hm: Skew ”\{S :33" pH)" \ y: @(X) ) gf.) {s Smoo‘l'k and mend-one What {f 3%) JCtmasfing ? : fidexp fxuc) (- 3—35. {S LI‘RPCAf +(nn5‘l'ufm N'fx'On : 1" Y: GLX+L where air—o Y -- b & fiQn X = 150m {us-2:9». 1%] I fi(‘g-L) CL 0 use Smyfose Y: fi-X u: .-.: "Y K” {3‘3}: ke—lé u+3>o 'e =J‘X Cs axptx) ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern