This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Review Exam 1 * This is intended to be a tool to help you review some of the material that could appear on the exam. It is not inclusive of all topics discussed in lecture. 1. Evaluate the following limits: lim x 2 x 2 + 6 x 4 x 2 lim x 3 x 2 + 3 x 18 x 2 9 lim x  3 + x 2 + 3 x 18 x 2 9 lim x + x sin( 1 x ) lim x 2 1 2 1 x 2 2 2 x lim x 2 + x 2 + 8 x 20  2 x  2. Given that sin( x ) = 8 17 , cos( y ) = 4 5 , x is an angle in Quadrant I, and y is an angle in Quadrant IV, evaluate csc( y ) and tan( x + y ). 3. Suppose f , g , and h are functions such that lim x  1 h ( x ) = 4, lim x 2 f ( x ) = 2, and lim x 2 g ( x ) = 1 2 . Evaluate lim x  1 + h ( fg )( 2 x ) (1 p h ( x )) 2 4. Solve for x in [ , ]: tan( x ) sin(2 x ) = 0 5. Solve the inequality: 8 4 x 2 x 6 6. Find the domain of the following functions: f ( x ) = r x 2 8 x g ( x ) = x 2 x 2 4 x h ( x ) = x 2 ln( x ) 7. If f ( x ) = 1 2 + x and g ( x ) = 1...
View
Full
Document
This note was uploaded on 01/13/2010 for the course MAC 2311 taught by Professor All during the Fall '08 term at University of Florida.
 Fall '08
 ALL
 Calculus, Limits

Click to edit the document details