interest rate parity

they are nice for short hand but not sufficiently

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 360 1st The equation is easiest to work with The 2nd equation has the better intuition I. Find any one of F, S, i, i* II. If there is a CIRP violation, find the arbitrage that will make a profit, or III. Find the better location to borrow or lend 62 13 Examples € ¥ £ $ Data: Spot rate 3 m. LIBOR 1.5921 $/€ 4.96% 107.00 ¥/$ 0.75% 1.9918 $/£ 5.77% n.a. 2.30% 63 $/€ A “fair” quote on a 3-month forward contract is: Ft,90 = 1.5921(1+0.0230/4)/(1+0.0496/4) = Which currency is at a premium? 64 ¥/$ A “fair” quote on a 3-month forward contract is: Ft,90 = = Which currency is at a premium? 66 14 $/£ A “fair” quote on a 3-month forward is: Ft,90 = = Which currency is at a premium? 68 $/£ If Ft,90 = 1.96, what would be the implied £ interest rate? 1+i£t,90 = i£t,90 = 70 Arbitrage The most accurate predictions in finance rely on arbitrage! CIRP is an arbitrage relation, so we’d expect CIRP to hold very well • And it does! What is the nature of the arbitrage? • We’ll do this without bid-ask spreads; with them it is a lot messier See the appendix in my posted note if very interested 72 15 Synthesizing a Forward Position A Forward contract delivers 1 fc T days from now. Is there another way to get 1 fc T days ahead? 74 Synthesizing a Forward Position A Forward contract delivers 1 fc T days from now. Is there another way to get 1 fc T days ahead? You could take the money in $s, convert it to fc now, and deposit it in a T-day fc account The difference between this and a Forward is that you have to come up with the money now 75 Synthetic Forward (cnt.) We can fix this by borrowing in $s for T days Now it is the same as the Forward: Forward contract: • T days from now you deliver $s • You receive 1 fc Synthetic Forward: • T days from now you pay off the $ loan (pay $s) • Your 1 fc deposit matures (receive fc) 76 16 Synthetic Forward (cnt.) Day 0: Borrow $ Purchase S0 * 1 i 0,T S0 1 1 fc in the market * * * 1 i0,T S 0 1 i0,T * Deposit them in an fc account at i0,T 77 Synthetic Forward (cnt.)...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online