{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

0910F-108-02-midterm1-solutions

# 0910F-108-02-midterm1-solutions - MATH 108 section 02...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 108, section 02, Midterm #1, October 1, 2009. 1. Solve y’ + y2 sin(x) = 0. V12 Cévx wk as <1”; {LSZSMOHvO . TLA eﬁm‘lﬂﬁvx IS Maui. dx w; Cw‘ :1“ +0 "‘13 " Stanﬂ)‘ - 33' 2. Find the general solution to the equation 3/” — 8y’ + 12y = 0. ML ML M Serf gr ‘9‘ soL'l‘bK’ (H “PAW, we. {met \ I r a : @‘YALJU me +- H- : Y3.ng ' ‘Krev 4’13 “a; ((1/8r+ll>~erf m choral-errata gide is 0:: rzzﬁr-HL aquéﬂhl) W hack are. LRQ. 7L2— \$.9ka is hilt?» '1 7L. d7 3. Knowing that y1 = :13‘1 is a solution to :rzy” —— 2y 2 0, use the method of reduction of order to ﬁnd a second solution to this equation. We. win-(- 31; V“! ~11; k a SgL‘Adn . Li’s r?‘ m 72w. X ;1 :(3 2 N "I , O: X ~15»; ** XV -zv +21 «21 7‘ jz x x dLku 1 Xvu~2v ms, ‘gw his Jayne 4—0 we. "9522‘; X“ _ 2 v‘ " X 2 4. Knowing that y] = ac and y2 = 532(111 x) are solutions to 3323/” — 3xy’ + 4y = :32, ﬁnd the general 2 ll solution to a: y — 3003/ + 4y : \$2. (You may assume that we work in x > 0.) (dis use woe-42:ka 5" “It WWJV' 7%“ “Pd/"200 3‘0: “53"‘VLU‘L '3 “ SOL—kw +0 xzb“’3xU"LL/U ‘73 or how “WWFHJL/‘j 42'“ VS) 5. Usmg an mtegratlon factor, solve the equatlon (y + my)d\$ + gdy = 0. H N {M “344 9g —, l+s< ¢ 1:953 5g 1% head» ,5 “3+ emf- rum/lb Lat/4 {7’ “L a K ~ ~ ﬁamej)!‘ //b? "l‘ ' we” “’ij Q’LKM‘ "Lg—[Kw/‘g: %2‘3V:%‘NK=/*+Xﬁx Swivw’ raga)” 71% Wk wad—F XI" 1 95/44 / ‘9’ f’x‘l‘,/‘I~?{,s #:25- jv‘kjw'ha,wea W [9493 g“ a “P 6.4: ﬁcng 4931;: x X 50 §¢ g; 4K 7,. Scwxjmxix .2 51<ex+>w -e") «l' 365) : x5e, +j(7) . 4.. K . NmL #vn‘ xa :N ==§é1 xewj cjcjjo" ‘ K —- X 30 W ‘C X 6. Use the Laplace transform to solve the initlal value problem 1, ogt<7r 2; y"+y= { / y(0) =0,y’(0) = 1. 0, tZ7r/2; 2‘ iaujr/(é) Talctﬂj Lawéu’wtsgfm an lag/14 S'lzs) W £w§ok \$2.\ lag—£3 S - —st ’ L {1% Y 7’ "zL 4%) ; J— + (“Q A) — 5 (we’ve? 9'H Scszfl) S1+1 . s g?” w w 3—. at“? + m w —i‘¥s~i € W??? 7. Prove that £{f’(t)} = s£{f(t)} — f(0). w , mt £15m}; 5 #09:ch W— E 4 o (144 ="S£\$J{’ V 7. , % w , :— es Qty/m + s3 wee “2/6 0 .3 ‘7 “4(0) 4— S £{§C{); ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

0910F-108-02-midterm1-solutions - MATH 108 section 02...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online