example_MR4 - Stat 2225 Multiple Regression Example #4:...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Stat 2225 Multiple Regression Example #4: Adding and Deleting Variables There were 252 men selected to see how percent body fat depends on the various measurements from the body. In this example, we’re interested in: Response: body percent fat (in %); (Independent) Variables: (1) abdomen circumference (in cm), (2) chest circumference (in cm), (3) knee circumference (in cm) and (4) weight (in lbs). Initial Model: Multiple Regression Analysis ----------------------------------------------------------------------------- Dependent variable: Percent ----------------------------------------------------------------------------- Standard T Parameter Estimate Error Statistic P-Value ----------------------------------------------------------------------------- CONSTANT -17.5065 5.50806 -3.17835 0.0017 Abdomen 0.885166 0.0715378 12.3734 0.0000 Chest -0.211898 0.0890243 -2.38023 0.0181 Knee -0.619469 0.184939 -3.34958 0.0009 ----------------------------------------------------------------------------- Analysis of Variance ----------------------------------------------------------------------------- Source Sum of Squares Df Mean Square F-Ratio P-Value -----------------------------------------------------------------------------
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/17/2010 for the course STATS 2225 taught by Professor Li during the Spring '09 term at Langara.

Page1 / 2

example_MR4 - Stat 2225 Multiple Regression Example #4:...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online