Gde 2l eiw x f 0 stp x 3 boundary conditions w0

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: axial stress along the bottom, s max (x ) = ˘ M 0b È Lˆ 3Ê 1 ˆ Ê Í1 - stpÁ x - ˜ + Á Á a + 1 3 ˜(x - L )˙ ˜ 2I Î 2¯ 8Ë Ë ¯ ˚ 17. By inspection, y * = y, z * = z fi (0,0 ) By symmetry, I *z = 0 y * I zz =  Ei I zz + y 2 A i = 13.33 in 4 E0 [ ( )] * GDE: E 0 I zz v' ' ' ' (x ) = -10 BC: v(0 ) = v' (0 ) = v' ' ( ) = v' ' ' ( ) = 0 100 100 * E 0 I zz v' ' ' (x ) = -10 x + C1 * E 0 I zz v' ' (x ) = -5 x 2 + C1 x + C 2 C 5 * E 0 I zz v' (x ) = - x 3 + 1 x 2 + C 2 x + C 3 3 2 C C 5 * E 0 I zz v(x ) = - x 4 + 1 x 3 + 2 x 2 + C 3 x + C 4 12 6 2 fi C1 = 1000, C 2 = -50000, C 3 = C 4 = 0 Therefore, we have * E 0 I zz v(x ) = - 5 4 1000 3 50000 2 x+ xx 12 6 2 Deflection: v(x ) = 1 Ê - 5 4 500 3 ˆ x+ x - 25000 x 2 ˜ *Á 3 E 0 I zz Ë 12 ¯ Moment: * E 0 I zz v' ' (x ) = -5 x 2 + 1000 x - 50000 Stress: s xx ÈNc Ê M cI* - M cI* z yy y yz Í - yÁ * Á I* I* - I* 2 ÍA yz Ë yy zz Î Mc ˆ EÊ Á - y *z ˜ = E0 Á I zz ˜ Ë ¯ E = E0 () ˆ Ê M cI* - M cI* z yz ˜ - z Á y zz ˜ Á I* I* - I* 2 yz ¯ Ë yy zz () ˆ˘ ˜˙ ˜˙ ¯˚ At point A, v( 00 ) = -0.9377 in 1 s xx = 0 since M zc = 0 at x = 100 At point C, v(0 ) = 0 by the first boundary condition lb È (- 50000 )˘ s xx = 1Í- 2 ˙ = 7502 in 2 13.33 ˚ Î 18a) Boundary conditions: w(0 ) = w' (0 ) = w(L ) = w' ' (L ) = 0 GDE: (EIw' ')' ' = f z (x ) = q0 Ê1 - x ˆ fi EIw' ' ' ' (x ) = q0 Ê1 - x ˆ Á ˜ Á ˜ Ë L¯ Ë L¯ b) q0 x 2 EIw' ' ' = q 0 x + C1 2L q x2 q x3 EIw' ' = 0 - 0 + C1 x + C 2 2 6L 3 q0 x q 0 x 4 C1 2 EIw' = + x + C 2 x + C3 6 24 L 2 q x4 q x5 C C EIw = 0 - 0 + 1 x 3 + 2 x 2 + C 3 x + C 4 24 120 L 6 2 fi C1 = - 2q 0 L q L2 , C 2 = 0 , C3 = C 4 = 0 5 15 q 0 x 4 q 0 x 5 q 0 Lx 3 q 0 L2 x 2 EIw(x ) = + 24 120 L 15 30 Nondimensionalizing, EIw(x ) - 1 Ê x ˆ 1 Êxˆ 1 Êxˆ 1 Êxˆ = Á ˜+ Á ˜- Á ˜+ Á ˜ 4 120 Ë L ¯ 24 Ë L ¯ 15 Ë L ¯ 30 Ë L ¯ q0 L 5 4 3 2 c) M y (x ) = EIw' ' (x ) M y (x ) = q 0 L2 Ê x ˆ q L2 Ê x ˆ 2q L2 Ê x ˆ q L2 - 0 Á ˜ - 0 Á ˜+ 0 Á˜ 2 ËL¯ 6 ËL¯ 5 Ë L ¯ 15 2 3 Nondimensionalizing, M y (x ) q 0 L2 -1Ê x ˆ 1 Ê x ˆ 2Ê x ˆ 1 = Á ˜ + Á ˜ - Á ˜+ 6 ËL¯ 2Ë L¯ 5ËL¯ 5 3 2 19a) Ê 3x ˆ A(x ) = a(x )b = abÁ1 ˜ Ë 4L ¯ ba 3 (x ) a 3 b Ê 3 x ˆ I yy (x ) = = Á1 ˜ 12 12 Ë 4 L ¯ 3 The applied load will have two effects - extension: force p0b - bending: moment –p0ba/8 No distributed load: the only loading is applied at x = L which shows up in the boundary conditions. GDE: (EA(x )u ' (x ))' = - f x = 0 (EI yy (x )w' ' (x ))' ' = f z = 0 Boundary conditions: u (0 ) = w(0 ) = w' (0 ) = ( yy w' ')L = 0 EI ' EA(L )u ' (L ) = p 0 b (EI yy w' ') = - p 0 L ab 8 Note that...
View Full Document

This note was uploaded on 01/18/2010 for the course AE 322 taught by Professor Lambros during the Spring '04 term at University of Illinois at Urbana–Champaign.

Ask a homework question - tutors are online