hw21_Solutions

# A since s x p du e a x dx e du p 1 2 dx ao x

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ¢( x) = 0 and contains the following boundary conditions w¢¢¢( L) = 0 w¢¢( L) = -100 w¢(0) = 0 w(0) = 0 integrating and applying the boundary conditions results in: w( x) = -8.8235 ¥ 10 -7 x 2 (b) The stress is found from the equation E = Eo ÏNc Ê M cI* - M cI* Ô y yz Á z yy Ì * - yÁ * * *2 ÔA Ë I yy I zz - I yz Ó ˆ Ê M cI* - M cI* z yz ˜ - z Á y zz ˜ Á I* I* - I* 2 yz ¯ Ë yy zz ˆ¸ ˜Ô ˜˝ ¯Ô ˛ s xx () () * * Simplifying, with M z = Eo I zz v ¢¢ and M y = Eo I yy w¢¢ s xx = Ê - 5 x 2 + 1000 x - 50208.8235 ˆ Ê - 100 ˆ¸ E ÏNc ˜ - zÁ - yÁ ˜˝ Ì Á ˜ Eo Ó A* 15.5343 Ë ¯ Ë 5.8 ¯˛ With the coordinates of a, b, and c being (50, 2.088235, 1), (50, -1.911765, 1), and (0, 2.088235, 1), plugging (x, y, z) into the stress equation produces a: s xx = 1732 psi b: s xx = -2311 psi c: s xx = 6773 psi 12. (a) The governing differential equation is of the form EI yy w¢¢¢¢ = f ( x) However, since both distributed forces are acting downward f ( x) = - f o - kw( x) Thus the GDE may be written as EI yy w¢¢¢¢ + kw = - f o with the following boundary conditions w(0) = w¢(0) = w( L) = w¢( L) = 0 (b) This is a non-homogenous differential equation, and the solution may be broken into a homogenous solution and a particular solution, i.e., w( x) = wh ( x) + w p ( x) By inspection, w p ( x) = fo k The homogenous solution may be found by solving the characteristic equation associated with the homogenous equation. wh ( x) = e bx (A1 cos bx + A2 sin bx )+ e - bx (A3 cos bx + A4 sin bx ) where b = k 4 EI Using Mathematica to solve for the four unknown coefficients by applying the boundary conditions, f o Ï - 1 + e bL cos bL + e bL sin bL ¸ Ì ˝ k Ó - 1 + e 2 bL + 2e bL sin bL ˛ f Ï1 - e bL cos bL + e bL sin bL ¸ A2 = o Ì ˝ k Ó - 1 + e 2 bL + 2e bL sin bL ˛ A1 = A3 = e bL A4 = e bL f o Ï e bL - cos bL + sin bL ¸ Ì ˝ k Ó - 1 + e 2 bL + 2e bL sin bL ˛ f o Ï e bL - cos bL - sin bL ¸ Ì ˝ k Ó - 1 + e 2 bL + 2e bL sin bL ˛ To plot, w(x), make the assumptions fo =L k bL = 1 13. The GDE for this problem is EIw¢¢¢¢( x) = -q By integrating this DE successively four times EIw = 1 1 1 qx 4 + C1 x 3 + C 2 x 2 + C 3 x + C 4 24 6 2 The following boundary conditions are applied w(0) = w¢(0) = w( L) = EIw¢¢( L) = 0 From the first two boundary conditions C3 = C 4 = 0 From the last two boundary conditions, a system of equations can be set up È1 3 Í6 L ÍL Î C1 = È1 ˘ 1 2 ˘ È C ˘ Í qL4 ˙ L 1 2 ˙ 2 ˙Í ˙ = Í 1 1 ˙ ÎC 2 ˚ Í qL2 ˙ ˚ Î2 ˚ 5 1 qL C 2 = - qL2 8 8 Thus, the deflection is w( x) = q - 3L2 x 2 + 5 Lx 2 - 2 x 4 48 EI [ Non dimensionalizing, 2 2 4 EI 1 È Êxˆ Êxˆ Êxˆ ˘ w( x) 4 = Í- 3Á ˜ + 5Á ˜ - 2Á ˜ ˙ 48 Í Ë L ¯ qL ËL¯ ËL¯ ˙ Î ˚ The moment is 2 EI 1 È Êxˆ Êxˆ ˘ w( x)¢¢ 4 = Í- 1 + 5Á ˜ - 4Á ˜ ˙ 8Í qL ËL¯ ËL¯ ˙ Î ˚ 14. (a) Since s ( x) = P du =E A( x) dx E du P 1 = 2 dx Ao Ê xˆ Á1 - e ˜ L¯ Ë PÊ xˆ u (x ) = Ú Á1 - e L ˜ dx EAo Ë ¯ -2 integrating this expression gives u ( x) = - P EAo Ê L ˆ -1 1 Á ˜( ) + C Ëe...
View Full Document

Ask a homework question - tutors are online