415a1.1 - Kiam Heong Kwa Kiam Heong Kwa Kiam Heong Kwa Kiam...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
Kiam Heong Kwa 03/31/09
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Kiam Heong Kwa 03/31/09
Background image of page 2
Kiam Heong Kwa 03/31/09
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Kiam Heong Kwa 03/31/09
Background image of page 4
Kiam Heong Kwa 03/31/09
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Kiam Heong Kwa 03/31/09
Background image of page 6
Kiam Heong Kwa 03/31/09
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Kiam Heong Kwa 03/31/09
Background image of page 8
Math 415A: Corrections to Section 1.1 Problem 1.1.11. It is NOT true that if y 0 = y (0) < 0 , then y ( t ) → -∞ as t → ∞ . This is not true since it can be shown that y ( t ) = 4 y 0 e 4 t 4 + y 0 ( e 4 t - 1) . Hence for y 0 = y (0) < 0 , y ( t ) is not defined at t = t * = 1 4 ln p 4 - y 0 - y 0 P . Hence it does not make sense to talk about the limit as t → ∞ . HOWEVER, it can be checked that lim t t * - y ( t ) = -∞ . In other words, y ( t ) approaches -∞ in finite time if y 0 < 0 . So, the only thing one can infer from the direction field of the equation y p = y (4 - y ) are the following statements: 1. If y (0) > 0 , then y ( t ) converges to 4 . 2. If y (0) = 0 , then y ( t ) = 0 for all t 0 and thus converges to 0 . 3. If
Background image of page 9
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 9

415a1.1 - Kiam Heong Kwa Kiam Heong Kwa Kiam Heong Kwa Kiam...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online