PHY 183 test 2 - Kinetic Energy K = ½ mv 2 K can never be...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Kinetic Energy K = ½ mv 2 , K can never be negative Energy unit: 1J=1kg•m 2 •s-2 Work - Kinetic Energy Theorem: ΔK= K – K =W (work) Work Work for constant force - 1d: W = FΔx Work for constant force - 3d: W=FΔr cos FΔr ⌠x | Work done by a variable force, 1d case: W= ⌡ x o F(x’)dx | ⌠r Most general 3d case: | W=⌡r o F(r’)*dr Work done against gravity: W g = mgh Work changing length of spring: W = ½ kx 2 + ½ kx 2 Power Definition of power as the rate at which work is done: P = dW/dt Average power over a time interval Δt: P = W/ Δt Unit of power (SI): 1 W = 1 J/s Unit of power (non-SI): 1 hp = 550 ft lb/s = 746 W Common energy unit: 1 kWh = 3.6•10 6 J = 3.6 MJ Power for constant force P = Fv cosα Fv Potential Energy Gravitational Potential Energy U g = - Wg (0 y ) = mgy Changing Gravitational Potential Energy: Δ Ug = - W g Gravity U g ( y ) = mgy + constant Spring force U s ( x ) = ½ kx 2 + constant F(x)=-(dU(x))/dx U=mgh Pendulum: E=mgl(1-cosθ)+ ½mv 2...
View Full Document

This note was uploaded on 04/03/2008 for the course PHY 231 taught by Professor Smith during the Spring '08 term at Michigan State University.

Ask a homework question - tutors are online