13 ext 1 n p 0 p 0 0 ext 1 n 813a n

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: eld for homogeneous polarization (only for ellipsoid of revolution) (N =-NP / ε0 (8.13) Field inside the sample (″macroscopic field″): ( = ( ext − 1 N P, ε0 P = ε 0 χ( = N: depolarization factor 8-7 χ ε 0 ( ext 1 + Nχ (8.13a) Depolarization factor for special geometries: Sphere: N = 1/3, hollow sphere: N = -1/3 (see eq. 8.12) Long rod || ( : N = 0 ⇒ for (I = 0 : (local = (ext + (N + (L (8.14) Spherical sample: (N = -(L ⇒ (local = (ext (8.15) 1 1 2 Thin slap ⊥ ( : ( local = ( ext − ε P + 3ε P = ( ext − 3ε P (8.16) 0 0 0 1 ( local = ( ext + P Long rod || ( : (N = 0 ⇒ 3ε 0 8-8 (8.17) Clausius-Mosotti equation Solid with atom sites of cubic symetry ⇒ (I = 0 (local = ( + (L , ( = (ext + (N , (8.18) macroscopic field inside sample P = ε0nv α(local (8.8) 1 ⇒ P = ε0nv α(( + 3ε P ) 0 nvα ( 1 1 − nvα ⇒ 3 P = ε0 χ( P = ε0 ⇒ χ= (8.3) nvα 1 1 − nvα 3 ε = 1+ χ = 1+ ⇒ (8.19) (8.20) n vα 1 1 − n vα 3 ε −1 1 n vα = 3 ε +2 (8.21) Clausius-Mosotti equation (8.22) Measurement of ε ⇒ molecular polarizability α. 8-9 Lorentz’s oscillator model for the electronic polarizability Small displacement x of an electron in a lattice atom from it’s equilibrium position. ⇒ - linear restoring force - dipole moment -ex Applied electromagnetic field ⇒ ( = ( local e − iωt ⇒ forced oscillation. 0 Oscillating dipole emits adiation ⇒ damping ∝dx/dt Equation of motion: d 2x dx 2 0 m 2 + mβ + mω 0 x = −e(local e iωt dt dt (8.23) β: damping constant, ω0 = f / m : frequency of undamped vibration, Restoring force: F = -fx Analogous to forced mechanical oscillation ⇒ stationary state approached with relaxation time τ = 1 /β (8.24) 8-10 Complex amplitude: x=− 1 e ( iω local m ω2 −ω2 − 0 τ p = -ex = αelε0(local Dipole moment: e2 1 α el (ω ) = Electrical polarizability: ε 0 m ω 2 − ω 2 − iω 0 τ (8.25) (8.26) (8.27) (8.27) in (8.21) ⇒ nv e 2 ε (ω ) = 1 + ε 0m 1 1 nv e 2 = 1+ 2 ω1 e ε 0m ω 2 − ω 2 − i ω ω 02 −...
View Full Document

Ask a homework question - tutors are online