This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: , 'NorthWest' ) % Evaluate the polynomials for a car going 65 mph. v = 65*1.6; %car's speed in km/hr dist = (polyval(f1,v) + polyval(f2,v))*3.281; %stopping dist in ft fprintf( 'The stopping distance for a car going 65 mph is %4.1f feet.\n' ,dist) 1. Output: The stopping distance for a car going 65 mph is 272.5 feet. Notes: – To “develop” the bestfit equations, i.e., to figure out the order of the bestfit polynomial, you must plot the data points, and notice that the thinking data appears to be linear, and the braking data appears to be quadratic. Polynomials of order 1, 2, 3, or 4 are acceptable to fit to the thinking data, and polynomials of order 2, 3, 4, or 5 are acceptable to fit to the braking data. I used 1storder and 2ndorder, respectively. – Convert 65 mph to km/hr. The number you get as an output will be in meters, so convert that number to feet....
View
Full
Document
This note was uploaded on 01/20/2010 for the course ASE 311 taught by Professor Kraczek during the Spring '08 term at University of Texas.
 Spring '08
 KRACZEK

Click to edit the document details