hw7_solution - - 1]; J = [2*x(1) 2*x(2); ... % Jacobian...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
1. Determine a solution to the given equations using the Newton-Raphson method. Below is my code and output. Code: % ASE 311, HW 7, problem 1. % Date: 21 Oct 09. clear all clc %% x = [1;1]; i = 0; tol = 1e-4; while (1) i = i+1; f = [x(1)^2 + x(2)^2 - 5 ; ... % f(x) at step k x(1)^2 - x(2)
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: - 1]; J = [2*x(1) 2*x(2); ... % Jacobian matrix J(x) at step k 2*x(1) -1 ]; x = x - J\f; % iterate on x. .. f = [x(1)^2 + x(2)^2 - 5 ; ... % f(x) at step k+1 x(1)^2 - x(2) - 1]; if norm(f,2) < tol break end end x i Output: x = 1.6005 1.5616 i = 4...
View Full Document

Page1 / 2

hw7_solution - - 1]; J = [2*x(1) 2*x(2); ... % Jacobian...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online