{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

33 transient_ex1_-_gui[1]

# 33 transient_ex1_-_gui[1] - University of Alberta ANSYS...

This preview shows pages 1–4. Sign up to view the full content.

Transient Thermal Conduction Example Introduction This tutorial was created using ANSYS 7.0 to solve a simple transient conduction problem. Special thanks to Jesse Arnold for the analytical solution shown at the end of the tutorial. The example is constrained as shown in the following figure. Thermal conductivity (k) of the material is 5 W/m*K and the block is assumed to be infinitely long. Also, the density of the material is 920 kg/m^3 and the specific heat capacity (c) is 2.040 kJ/kg*K. It is beneficial if the Thermal - Conduction tutorial is completed first to compare with this solution. Preprocessing: Defining the Problem 1. Give example a Title Utility Menu > File > Change Title... /Title,Transient Thermal Conduction 2. Open preprocessor menu ANSYS Main Menu > Preprocessor /PREP7 University of Alberta ANSYS Tutorials - www.mece.ualberta.ca/tutorials/ansys/IT/TransCond/Print.html Copyright © 2003 University of Alberta

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3. Create geometry Preprocessor > Modeling > Create > Areas > Rectangle > By 2 Corners X=0, Y=0, Width=1, Height=1 BLC4,0,0,1,1 4. Define the Type of Element Preprocessor > Element Type > Add/Edit/Delete... > click 'Add' > Select Thermal Mass Solid, Quad 4Node 55 ET,1,PLANE55 For this example, we will use PLANE55 (Thermal Solid, Quad 4node 55). This element has 4 nodes and a single DOF (temperature) at each node. PLANE55 can only be used for 2 dimensional steady-state or transient thermal analysis. 5. Element Material Properties Preprocessor > Material Props > Material Models > Thermal > Conductivity > Isotropic > KXX = 5 (Thermal conductivity) MP,KXX,1,10 Preprocessor > Material Props > Material Models > Thermal > Specific Heat > C = 2.04 MP,C,1,2.04 Preprocessor > Material Props > Material Models > Thermal > Density > DENS = 920 MP,DENS,1,920 6. Mesh Size Preprocessor > Meshing > Size Cntrls > ManualSize > Areas > All Areas > 0.05 AESIZE,ALL,0.05 7. Mesh Preprocessor > Meshing > Mesh > Areas > Free > Pick All AMESH,ALL At this point, the model should look like the following: University of Alberta ANSYS Tutorials - www.mece.ualberta.ca/tutorials/ansys/IT/TransCond/Print.html Copyright © 2003 University of Alberta
Solution Phase: Assigning Loads and Solving 1. Define Analysis Type Solution > Analysis Type > New Analysis > Transient ANTYPE,4 The window shown below will pop up. We will use the defaults, so click OK.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern